Highly nitrogen and sulfur dual-doped carbon microspheres for supercapacitors

July 06, 2017

Among various kinds of electrode materials for supercapacitors, carbon-based materials are most commonly used because of their commercially available and cheap, and they can be produced with large specific surface area. Heteroatom doping, especially dual-doped carbon materials have attracted much attention for the past few years, and have been regarded as one of the most efficient strategies to enhance the capacitance behavior of porous carbon materials. However, most of the preparations of co-doped carbon materials involve high temperature treatment and post-processing of doping procedures. Therefore, it is necessary to develop a concise route for large-scale production of dual-doped carbon with desirable morphology and structure, and meanwhile, to achieve high content of doping.

In an article published in Science Bulletin, Prof. Deli Wang's research group describe a facile two-step synthetic route was developed to fabricate N/S co-doped carbon microsphere (NSCM) by merely using thiourea as dopant. The N/S doping content is controlled via varying the carbonization temperature. It has been proved that a suitable quantity of N and S groups can not only provide pseudo-capacitance but also promote the electron transfer for carbon materials, which ensures the further utilization of the exposed surfaces for charge storage.

The optimized NSCM prepared at a carbonization temperature of 800 oC (NSCM-800) achieves a high capacitance of 277.1 F g-1 at a current density of 0.3 A g-1, and a high capacitance retention of 98.2% after 5000 cycles. Since the precursors used in this strategy are glucose and thiourea, which are both inexpensive and widely used, the production of high doping content of co-doped carbon materials can be easily scaled-up for practical applications of supercapacitors in light of the very simple reaction processes involved.
See the article:

Wen Lei, Junpo Guo, Zexing Wu, Cuijuan Xuan, Weiping Xiao, Deli Wang. Science Bulletin, 2017, https://doi.org/10.1016/j.scib.2017.06.001http://www.sciencedirect.com/science/article/pii/S2095927317303067

Science China Press

Related Carbon Articles from Brightsurf:

The biggest trees capture the most carbon: Large trees dominate carbon storage in forests
A recent study examining carbon storage in Pacific Northwest forests demonstrated that although large-diameter trees (21 inches) only comprised 3% of total stems, they accounted for 42% of the total aboveground carbon storage.

Carbon storage from the lab
Researchers at the University of Freiburg established the world's largest collection of moss species for the peat industry and science

Carbon-carbon covalent bonds far more flexible than presumed
A Hokkaido University research group has successfully demonstrated that carbon-carbon (C-C) covalent bonds expand and contract flexibly in response to light and heat.

Metal wires of carbon complete toolbox for carbon-based computers
Carbon-based computers have the potential to be a lot faster and much more energy efficient than silicon-based computers, but 2D graphene and carbon nanotubes have proved challenging to turn into the elements needed to construct transistor circuits.

Cascades with carbon dioxide
Carbon dioxide (CO(2)) is not just an undesirable greenhouse gas, it is also an interesting source of raw materials that are valuable and can be recycled sustainably.

Two-dimensional carbon networks
Lithium-ion batteries usually contain graphitic carbons as anode materials. Scientists have investigated the carbonic nanoweb graphdiyne as a novel two-dimensional carbon network for its suitability in battery applications.

Can wood construction transform cities from carbon source to carbon vault?
A new study by researchers and architects at Yale and the Potsdam Institute for Climate Impact Research predicts that a transition to timber-based wood products in the construction of new housing, buildings, and infrastructure would not only offset enormous amounts of carbon emissions related to concrete and steel production -- it could turn the world's cities into a vast carbon sink.

Investigation of oceanic 'black carbon' uncovers mystery in global carbon cycle
An unexpected finding published today in Nature Communications challenges a long-held assumption about the origin of oceanic black coal, and introduces a tantalizing new mystery: If oceanic black carbon is significantly different from the black carbon found in rivers, where did it come from?

First fully rechargeable carbon dioxide battery with carbon neutrality
Researchers at the University of Illinois at Chicago are the first to show that lithium-carbon dioxide batteries can be designed to operate in a fully rechargeable manner, and they have successfully tested a lithium-carbon dioxide battery prototype running up to 500 consecutive cycles of charge/recharge processes.

How and when was carbon distributed in the Earth?
A magma ocean existing during the core formation is thought to have been highly depleted in carbon due to its high-siderophile (iron loving) behavior.

Read More: Carbon News and Carbon Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.