Nav: Home

Plant nutrient detector breakthrough

July 06, 2019

Findings from La Trobe University-led research could lead to less fertiliser wastage, saving millions of dollars for Australian farmers.

The international research team has uncovered a protein that can sense vital phosphorus levels - the 'fuel in the tank' - in plants and then adjust growth and flowering in response.

Published in the journal Plant Physiology, the findings provide a deeper understanding of the mechanisms whereby plants sense how much and when to take in the essential nutrient, phosphorus, for optimal growth.

Lead author Dr Ricarda Jost, from the Department of Plant, Animal and Soil Sciences at La Trobe University said the environmental and economic benefits to farmers could be significant.

"In countries like Australia where soils are phosphorus poor, farmers are using large amounts of expensive, non-renewable phosphorus fertiliser, such as superphosphate or diammonium phosphate (DAP), much of which is not being taken up effectively by crops at the right time for growth," Dr Jost said.

"Our findings have shown that a protein called SPX4 senses the nutrient status - the 'amount of fuel in the tank' of a crop - and alters gene regulation to either switch off or turn on phosphorus acquisition, and to alter growth and flowering time."

Using Arabidopsis thaliana (thale or mouse-ear cress) shoots, the research team conducted genetic testing by adding phosphorus fertiliser and observing the behaviour of the protein.

For the first time, the SPX4 protein was observed to have both a negative and a positive regulatory effect on phosphorus take-up and resulting plant growth.

"The protein senses when the plant has taken in enough phosphorus and tells the roots to stop taking it up," Dr Jost said. "If the fuel pump is turned off too early, this can limit plant growth.

"On the other hand, SPX4 seems to have a 'moonlighting' activity and can activate beneficial processes of crop development such as initiation of flowering and seed production."

This greater understanding of how SPX4 operates could lead to a more precise identification of the genes it regulates, and an opportunity to control the protein's activity using genetic intervention - switching on the positive and switching off the negative responses.

La Trobe agronomist Dr James Hunt said the research findings sit well with the necessity for Australian farmers' to be as efficient as possible with costly fertiliser inputs.

"In our no-till cropping systems, phosphorous gets stratified in the top layers of soil. When this layer gets dry, crops cannot access these reserves and enter what we a call a phosphorus drought," Dr Hunt said.

"The phosphorous is there, but crops can't access it in the dry soil. If we could manipulate crop species to take up more phosphorous when the top soil is wet, we'd be putting more fuel in the tank for later crop growth when the top soil dries out."

The research team will now be investigating in more detail how SPX4 interacts with gene regulators around plant development and controlling flowering time.
-end-
The research was published in Plant Physiology with collaborators from Zhejiang University (China), Ghent University & VIB Center for Plant Systems Biology (Belgium), French Alternative Energies and Atomic Energy Commission (CEA) and the Australian Research Council Centre of Excellence in Plant Energy Biology.

La Trobe University

Related Phosphorus Articles:

Zinc's negative effects on mineral digestibility can be mitigated, study shows
Researchers at the University of Illinois have shown that a common strategy for reducing postweaning digestive problems in pigs may have negative effects on calcium and phosphorus digestibility, and are suggesting management practices to counteract the effects.
Iron deficiency restrains marine microbes
Iron is a critical nutrient in the ocean. Its importance for algae and the nitrogen cycle has already been investigated in detail.
A better way to manage phosphorus?
A new project proposes a restructured index to build on phosphorus management efforts in farm fields in New York state and beyond.
Nitrogen, phosphorus from fertilizers and pet waste polluting urban water
New research from the University of Minnesota points to lawn fertilizers and pet waste as the dominant sources of nitrogen and phosphorus pollutants in seven sub-watersheds of the Mississippi River in Saint Paul, Minn.
Study quantifies effect of 'legacy phosphorus' in reduced water quality
For decades, phosphorous has accumulated in Wisconsin soils. Though farmers have taken steps to reduce the quantity of the agricultural nutrient applied to and running off their fields, a new study from the University of Wisconsin-Madison reveals that a 'legacy' of abundant soil phosphorus in the Yahara watershed of Southern Wisconsin has a large, direct and long-lasting impact on water quality.
Increased water availability from climate change may release more nutrients into soil in Antarctica
As climate change continues to impact the Antarctic, glacier melt and permafrost thaw are likely to make more liquid water available to soil and aquatic ecosystems in the McMurdo Dry Valleys, potentially providing a more nutrient-rich environment for life, according to a Dartmouth study recently published in Antarctic Science.
UD's Jaisi wins NSF Career Award for research on phosphorus in soil
Much like criminal forensic scientists use fingerprints to identify guilty parties at crime scenes, the University of Delaware's Deb Jaisi utilizes isotopic fingerprinting technology to locate the sources of phosphorus compounds and studies the degraded products they leave behind in soil and water.
Wastewater research may help protect aquatic life
New wastewater system design guidelines developed at UBC can help municipal governments better protect aquatic life and save millions of dollars a year.
Safe fog
Safety combined with power and effectiveness is one of the most important targets in the development of pyrotechnic obscurants.
How your diet can influence your environmental impact
The impact of our dietary choices on the global phosphorus footprint shouldn't be neglected, shows a new study.

Related Phosphorus Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...