Epigenetics: What the embryo can teach us about cell reprogramming

July 06, 2020

Prof. Maria-Elena Torres-Padilla, Director of the Institute of Epigenetics and Stem Cells at Helmholtz Zentrum München and her colleague Dr. Adam Burton are doing pioneering work in this field.

Why would we want to reprogram cells?

Maria-Elena: Can you imagine being able to artificially generate cells that can develop into any cell type? That would be really fantastic! We call this ability 'totipotency' and it is the highest level of cellular plasticity. When you think about using healthy cells to replace sick cells, for example in regeneration and replacement therapies, you need to think about how to generate those 'new' healthy cells. For that, you often need to 'reprogram' other cells, that means, to be able to change one cell into the cell type of interest.

In nature, cellular reprogramming happens in the early embryo at fertilization. It is a purely epigenetic process since the DNA content of the embryo's cells does not change, only the genes they express. Epigenetics mediates changes in gene expression meaning the way our genes are 'read' from our genetic makeup, which is largely imposed by chromatin. Chromatin is the structure, in which the DNA of a cell is packed into, so that it can fit into the tiny nucleus of a cell, and heterochromatin refers to the part of our DNA that is tightly packed and not accessible.

Heterochromatin is known to be a major bottleneck for artificial cell reprogramming. In embryos, however, the process of cell reprogramming is extremely efficient, some people even think that it is 100% efficient. Therefore, we wanted to understand how the embryo 'keeps heterochromatin in check' so that reprogramming can occur. Adopting strategies for reprogramming based on our knowledge of how the embryo does it, is very promising. These strategies can help us to increase the efficiency of reprogramming for regenerative medicine - an outstanding opportunity and research priority of the years to come.

How does the embryo deal with heterochromatin?

Adam: Heterochromatin is tightly controlled in the embryo from early on. In a mouse model, we saw that the histone* modification H3K9me3, which is the classical marker of heterochromatin, is in fact present in the embryo from early on. Usually, H3K9me3 correlates strongly with gene silencing, meaning that the genes cannot be 'read' from our genetic makeup. However, we observed that in the very early embryo, this is surprisingly not the case and that H3K9me3 is compatible with gene expression! One of our major findings was to discover that the enzyme, which adds the H3K9me3 mark to the histone, is inhibited by a non-coding RNA, that means there is an active process in the early embryo that counteracts the establishment of fully functional heterochromatin. Globally, we concluded that heterochromatin in the early mammalian embryo is immature because it cannot fulfill its typical function. This is probably due to the absence of other critical heterochromatic factors, which we are now also currently investigating.

How could we use this new knowledge for artificial cell reprogramming?

Maria-Elena: Essentially, what our work documents is a potential way to 'tune' down heterochromatin. These findings will provide us with the factors that we can manipulate for making artificial cell reprogramming more efficient and achieve higher cell conversion rates. The key take-home message is that we can learn from the epigenetic remodeling that occurs during the natural process of reprogramming in embryos at fertilization and can transfer this knowledge to improve currently inefficient artificial reprogramming strategies. In fact, learning lessons from the embryo will enable the more efficient and timely generation of high-quality, fully reprogrammed stem cells, which are vital for the full implementation of regenerative medicine approaches in the clinic.

*Histones are basic proteins that are important for the packaging of the DNA into chromatin. The DNA wraps around a histone octamer and this structure is known as nucleosome. Generally, chromatin consists of arrays of nucleosomes and under the microscope this structure looks like beads-on-a-string.

Helmholtz Zentrum München - German Research Center for Environmental Health

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.