BU researchers design artificial genes to sense cellular responses to drugs

July 06, 2020

(Boston)--Researchers from Boston University School of Medicine (BUSM) have developed and implemented a new way to better understand how human cells communicate with each other, how this communication is disrupted in human diseases and how this can be corrected pharmacologically.

Their method consists of a suite of "biosensors", which are artificial genes that can be introduced in cells to report in real time when an important group of signaling molecules is turned on. These signaling molecules, "G-proteins," are molecular on/off switches inside cells. They are turned on by a large family of receptor proteins that sense a very wide range of stimuli, including light, odors, neurotransmitters and hormones.

This signaling mechanism has been studied over the course of several decades. However, what is new about these "biosensors" is that they were developed to study G-proteins with an accuracy that was not possible before. "These biosensors are good 'spies' in the sense that they can tell us what G-proteins are doing in real time with a resolution of tens of milliseconds, but without interfering with the signaling process that is being observed," explained corresponding author Mikel Garcia-Marcos, PhD, associate professor of biochemistry at BUSM. "Moreover, our biosensors have the advantage of easy implementation, which allows us to study G-proteins directly in experimental systems that were previously unavailable."

The researchers used molecular engineering to create their biosensors by borrowing parts from existing genes, including genes that encode fluorescent proteins from jellyfish, shape-changing proteins that make muscles contract, light-emitting proteins from deep sea shrimp and proteins known to specifically recognize active G-proteins. They then introduced the engineered genes that make the biosensors into several different types of cells and studied how they responded to stimulation by natural stimuli, like neurotransmitters or clinically used drugs.

According to the researchers, more than one-third of FDA-approved drugs work by activating or inhibiting signaling by G-proteins including common allergy medications, nasal decongestants, highly prescribed drugs for blood pressure, first-line treatment for Parkinson's, analgesics, anti-psychotics as well as cannabis and opioids.

Lead author Marcin Maziarz, PhD, post-doc in the Garcia-Marcos' laboratory, believes these biosensors can be instrumental in drug discovery and drug development and in characterizing the mode of action of many existing medications. "What we're doing today is important because it will allow researchers to more easily and accurately identify drugs more likely to be successful in clinical trials since many drugs that initially show promise in experimental systems eventually fail to deliver clinical results," he said.

The findings appear online in the journal Cell.
Funding for this study was provided by NIH grants R21MH118745, R01GM136132, and R01GM130120 (to M.G.-M.). M.M. was supported by American Cancer Society Funding Hope postdoctoral fellowship PF-19-084-01-CDD.

Editor's Note: M.G.M. is listed as an inventor in a provisional patent filed by Boston University related to the content of this manuscript.

Boston University School of Medicine

Related Blood Pressure Articles from Brightsurf:

Children who take steroids at increased risk for diabetes, high blood pressure, blood clots
Children who take oral steroids to treat asthma or autoimmune diseases have an increased risk of diabetes, high blood pressure, and blood clots, according to Rutgers researchers.

High blood pressure treatment linked to less risk for drop in blood pressure upon standing
Treatment to lower blood pressure did not increase and may decrease the risk of extreme drops in blood pressure upon standing from a sitting position.

Changes in blood pressure control over 2 decades among US adults with high blood pressure
National survey data were used to examine how blood pressure control changed overall among U.S. adults with high blood pressure between 1999-2000 and 2017-2018 and by age, race, insurance type and access to health care.

Transient increase in blood pressure promotes some blood vessel growth
Blood vessels are the body's transportation system, carrying oxygen and nutrients to cells and whisking away waste.

Effect of reducing blood pressure medications on blood pressure control in older adults
Whether the amount of blood pressure medications taken by older adults could be reduced safely and without a significant change in short-term blood pressure control was the objective of this randomized clinical trial that included 534 adults 80 and older.

Brain blood flow sensor discovery could aid treatments for high blood pressure & dementia
A study led by researchers at UCL has discovered the mechanism that allows the brain to monitor its own blood supply, a finding in rats which may help to find new treatments for human conditions including hypertension (high blood pressure) and dementia.

Here's something that will raise your blood pressure
The apelin receptor (APJ) has been presumed to play an important role in the contraction of blood vessels involved in blood pressure regulation.

New strategy for treating high blood pressure
The key to treating blood pressure might lie in people who are 'resistant' to developing high blood pressure even when they eat high salt diets, shows new research published today in Experimental Physiology.

Arm cuff blood pressure measurements may fall short for predicting heart disease risk in some people with resistant high blood pressure
A measurement of central blood pressure in people with difficult-to-treat high blood pressure could help reduce risk of heart disease better than traditional arm cuff readings for some patients, according to preliminary research presented at the American Heart Association's Hypertension 2019 Scientific Sessions.

Heating pads may lower blood pressure in people with high blood pressure when lying down
In people with supine hypertension due to autonomic failure, a condition that increases blood pressure when lying down, overnight heat therapy significantly decreased systolic blood pressure compared to a placebo.

Read More: Blood Pressure News and Blood Pressure Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.