What ethical models for autonomous vehicles don't address - and how they could be better

July 06, 2020

There's a fairly large flaw in the way that programmers are currently addressing ethical concerns related to artificial intelligence (AI) and autonomous vehicles (AVs). Namely, existing approaches don't account for the fact that people might try to use the AVs to do something bad.

For example, let's say that there is an autonomous vehicle with no passengers and it is about to crash into a car containing five people. It can avoid the collision by swerving out of the road, but it would then hit a pedestrian.

Most discussions of ethics in this scenario focus on whether the autonomous vehicle's AI should be selfish (protecting the vehicle and its cargo) or utilitarian (choosing the action that harms the fewest people). But that either/or approach to ethics can raise problems of its own.

"Current approaches to ethics and autonomous vehicles are a dangerous oversimplification - moral judgment is more complex than that," says Veljko Dubljevi?, an assistant professor in the Science, Technology & Society (STS) program at North Carolina State University and author of a paper outlining this problem and a possible path forward. "For example, what if the five people in the car are terrorists? And what if they are deliberately taking advantage of the AI's programming to kill the nearby pedestrian or hurt other people? Then you might want the autonomous vehicle to hit the car with five passengers.

"In other words, the simplistic approach currently being used to address ethical considerations in AI and autonomous vehicles doesn't account for malicious intent. And it should."

As an alternative, Dubljevi? proposes using the so-called Agent-Deed-Consequence (ADC) model as a framework that AIs could use to make moral judgements. The ADC model judges the morality of a decision based on three variables.

First, is the agent's intent good or bad? Second, is the deed or action itself good or bad? Lastly, is the outcome or consequence good or bad? This approach allows for considerable nuance.

For example, most people would agree that running a red light is bad. But what if you run a red light in order to get out of the way of a speeding ambulance? And what if running the red light means that you avoided a collision with that ambulance?

"The ADC model would allow us to get closer to the flexibility and stability that we see in human moral judgment, but that does not yet exist in AI," says Dubljevi?. "Here's what I mean by stable and flexible. Human moral judgment is stable because most people would agree that lying is morally bad. But it's flexible because most people would also agree that people who lied to Nazis in order to protect Jews were doing something morally good.

"But while the ADC model gives us a path forward, more research is needed," Dubljevi? says. "I have led experimental work on how both philosophers and lay people approach moral judgment, and the results were valuable. However, that work gave people information in writing. More studies of human moral judgment are needed that rely on more immediate means of communication, such as virtual reality, if we want to confirm our earlier findings and implement them in AVs. Also, vigorous testing with driving simulation studies should be done before any putatively 'ethical' AVs start sharing the road with humans on a regular basis. Vehicle terror attacks have, unfortunately, become more common, and we need to be sure that AV technology will not be misused for nefarious purposes."
-end-
The paper, "Toward Implementing the ADC Model of Moral Judgment in Autonomous Vehicles," is published in the journal Science and Engineering Ethics.

North Carolina State University

Related Artificial Intelligence Articles from Brightsurf:

Physics can assist with key challenges in artificial intelligence
Two challenges in the field of artificial intelligence have been solved by adopting a physical concept introduced a century ago to describe the formation of a magnet during a process of iron bulk cooling.

A survey on artificial intelligence in chest imaging of COVID-19
Announcing a new article publication for BIO Integration journal. In this review article the authors consider the application of artificial intelligence imaging analysis methods for COVID-19 clinical diagnosis.

Using artificial intelligence can improve pregnant women's health
Disorders such as congenital heart birth defects or macrosomia, gestational diabetes and preterm birth can be detected earlier when artificial intelligence is used.

Artificial intelligence (AI)-aided disease prediction
Artificial Intelligence (AI)-aided Disease Prediction https://doi.org/10.15212/bioi-2020-0017 Announcing a new article publication for BIO Integration journal.

Artificial intelligence dives into thousands of WW2 photographs
In a new international cross disciplinary study, researchers from Aarhus University, Denmark and Tampere University, Finland have used artificial intelligence to analyse large amounts of historical photos from WW2.

Applying artificial intelligence to science education
A new review published in the Journal of Research in Science Teaching highlights the potential of machine learning--a subset of artificial intelligence--in science education.

New roles for clinicians in the age of artificial intelligence
New Roles for Clinicians in the Age of Artificial Intelligence https://doi.org/10.15212/bioi-2020-0014 Announcing a new article publication for BIO Integration journal.

Artificial intelligence aids gene activation discovery
Scientists have long known that human genes are activated through instructions delivered by the precise order of our DNA.

Artificial intelligence recognizes deteriorating photoreceptors
A software based on artificial intelligence (AI), which was developed by researchers at the Eye Clinic of the University Hospital Bonn, Stanford University and University of Utah, enables the precise assessment of the progression of geographic atrophy (GA), a disease of the light sensitive retina caused by age-related macular degeneration (AMD).

Classifying galaxies with artificial intelligence
Astronomers have applied artificial intelligence (AI) to ultra-wide field-of-view images of the distant Universe captured by the Subaru Telescope, and have achieved a very high accuracy for finding and classifying spiral galaxies in those images.

Read More: Artificial Intelligence News and Artificial Intelligence Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.