High-Intensity Ultrasound Creates Better Catalyst For Cleaning Fuels

July 06, 1998

CHAMPAIGN, Ill. -- Using high-intensity ultrasound, researchers at the University of Illinois have discovered a dramatically improved catalyst for removing smelly sulfur-containing compounds from gasoline and other fossil fuels. The improved catalyst is a new form of molybdenum disulfide, most commonly recognized as the black lubricant used to grease automobiles and machinery.

Molybdenum disulfide normally consists of long, flat layers of molybdenum metal atoms sandwiched above and below by single atomic layers of sulfur. Because the interaction between the sulfur planes is weak, they can easily slide on one another, providing excellent high-temperature lubrication.

But molybdenum disulfide's other important commercial application is as a catalyst used by the petroleum industry to remove sulfur-containing compounds in gasoline. Upon combustion, these unwanted sulfur compounds would contribute to the formation of ecologically damaging acid rain.

"The flat planes of molybdenum disulfide that make it such a good lubricant also interfere with its ability to react with fuels to remove sulfur," said Kenneth Suslick, a U. of I. professor of chemical sciences. "This is because all the reactions necessary for sulfur removal occur along the edges of the long planes, and the bigger the planes, the less relative edge there is."

Suslick and students Millan Mdleleni and Taeghwan Hyeon discovered a way to make molybdenum disulfide with many more edge atoms using a technique called sonochemistry -- the chemical application of high-intensity ultrasound. The technique produces very small particles of molybdenum disulfide, 1,000 times smaller than the thickness of a human hair, that subsequently do not form into planes.

The sonochemical synthesis arises from acoustic cavitation -- the formation, growth and implosive collapse of small gas bubbles in a liquid blasted with sound. The collapse of these cavitating bubbles generates intense local heating, forming a hot spot in the cold liquid with a transient temperature of about 9,000 degrees Fahrenheit, the pressure of about 1,000 atmospheres and the duration of about a billionth of a second.

"When the bubbles collapse, the vapor of volatile molybdenum-metal-containing compounds inside the bubbles is decomposed into hot metal atoms," Suslick said. "These atoms then react with sulfur dissolved in the liquid to form clusters of molybdenum disulfide that contain a few thousand atoms and are about a millionth of an inch in diameter."

As the researchers reported in the June 24th issue of the Journal of the American Chemical Society, these clusters are too small to have extended planes of atoms and consequently possess many more edge atoms that can participate in the sulfur-removal process."Our sonochemically prepared molybdenum disulfide is 10 times more active than the standard industrial catalyst," Suslick said. "The sonochemical synthesis is simple, quick and easy to scale up."


University of Illinois at Urbana-Champaign

Related Molybdenum Disulfide Articles from Brightsurf:

Research lays groundwork for ultra-thin, energy efficient photodetector on glass
Though we may not always realize it, photodetectors contribute greatly to the convenience of modern life.

An improved wearable, stretchable gas sensor using nanocomposites
A stretchable, wearable gas sensor for environmental sensing has been developed and tested by researchers at Penn State, Northeastern University and five universities in China.

The art of making tiny holes
It sounds like a magic trick: A highly charged ion penetrates several layers of a material.

Room temperature superconductivity creeping toward possibility
The possibility of achieving room temperature superconductivity took a tiny step forward with a recent discovery by a team of Penn State physicists and materials scientists.

Ultrafast optical response and ablation mechanisms of molybdenum disulfide
Most studies on the electron dynamics of molybdenum disulfide examined levels below the damage threshold.

Development of electrode material improving the efficiency of salinity gradient energy
Dr. Jeong Nam-Jo of Korea Institute of Energy Research(KIER) Marine Energy Convergence and Integration Research Team developed synthesis technologies of electrode material that can directly synthesize molybdenum disulfide thin films on the electrode current collector surface to contribute improving the efficiency and economic feasibility of salt gradient power generation using reverse electrodialysis.

Molybdenum telluride nanosheets enable selective electrochemical production of hydrogen peroxide
Selective electrochemical production of hydrogen peroxide (H2O2) from oxygen reduction reaction in acids is highly desirable but challenging.

Superhard candy -- scientists cracked the complex crystal structure of molybdenum borides
In their search for new superhard compounds, researchers carried out a prediction of stable molybdenum borides and their crystal structures.

Russian scientists found an effective way to obtain fuel for hydrogen engines
A catalyst is needed for a chemical process that releases hydrogen from an H2O molecule.

Silver sawtooth creates valley-coherent light for nanophotonics
Scientists at the University of Groningen used a silver sawtooth nanoslit array to produce valley-coherent photoluminescence in two-dimensional tungsten disulfide flakes at room temperature.

Read More: Molybdenum Disulfide News and Molybdenum Disulfide Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.