Gene therapy and the regeneration of retinal ganglion cell axons

July 07, 2014

Because the adult mammalian central nervous system has only limited intrinsic capacity to regenerate connections after injury, due to factors both intrinsic and extrinsic to the mature neuron, therapies are required to support the survival of injured neurons and to promote the long-distance regrowth of axons back to their original target structures. The retina and optic nerve are part of the CNS and this system is much used in experiments designed to test new ways of promoting regeneration after injury. Testing of therapies designed to improve RGCs viability also has direct clinical relevance because there is loss of these centrally projecting neurons in many ophthalmic diseases. Many different approaches are being trialed, targeting different receptor systems and/or different signaling pathways, some aimed at enhancing intrinsic growth capacity in injured RGCs, others aimed at reducing the impact of factors external to the neuron that suppress/restrict the regenerative response. An approach increasingly of interest involves the use of modified, replication-deficient viral vectors to introduce appropriate genes into injured cells in the visual pathway (gene therapy).

In the perspective article written by Prof Alan Harvey, from School of Anatomy, Physiology and Human Biology, The University of Western Australia, he summarized recent gene therapy research from his laboratory, using the rodent visual system as an experimental model, which is aimed at improving both the viability and regenerative capacity of injured adult RGCs. These perspectives were published in the Neural Regeneration Research (Vol. 9, No. 3, 2014).
-end-


Neural Regeneration Research

Related Gene Therapy Articles from Brightsurf:

Risk of AAV mobilization in gene therapy
New data highlight safety concerns for the replication of recombinant adeno-associated viral (rAAV) vectors commonly used in gene therapy.

Discovery challenges the foundations of gene therapy
An article published today in Science Translational Medicine by scientists from Children's Medical Research Institute has challenged one of the foundations of the gene therapy field and will help to improve strategies for treating serious genetic disorders of the liver.

Gene therapy: Novel targets come into view
Retinitis pigmentosa is the most prevalent form of congenital blindness.

Gene therapy targets inner retina to combat blindness
Batten disease is a group of fatal, inherited lysosomal storage disorders that predominantly affect children.

New Human Gene Therapy editorial: Concern following gene therapy adverse events
Response to the recent report of the deaths of two children receiving high doses of a gene therapy vector (AAV8) in a Phase I trial for X-linked myotubular myopathy (MTM).

Restoring vision by gene therapy
Latest scientific findings give hope for people with incurable retinal degeneration.

Gene therapy/gene editing combo could offer hope for some genetic disorders
A hybrid approach that combines elements of gene therapy with gene editing converted an experimental model of a rare genetic disease into a milder form, significantly enhancing survival, shows a multi-institutional study led by the University of Pennsylvania and Children's National Hospital in Washington, D.C.

New technology allows control of gene therapy doses
Scientists at Scripps Research in Jupiter have developed a special molecular switch that could be embedded into gene therapies to allow doctors to control dosing.

Gene therapy: Development of new DNA transporters
Scientists at the Institute of Pharmacy at Martin Luther University Halle-Wittenberg (MLU) have developed new delivery vehicles for future gene therapies.

Gene therapy promotes nerve regeneration
Researchers from the Netherlands Institute for Neuroscience and the Leiden University Medical Center have shown that treatment using gene therapy leads to a faster recovery after nerve damage.

Read More: Gene Therapy News and Gene Therapy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.