Ultra-cold atom transport made simple

July 07, 2014

Techniques for controlling ultra-cold atoms travelling in ring traps currently represent an important research area in physics. A new study gives a proof of principle, confirmed by numerical simulations, of the applicability to ultra-cold atoms of a very efficient and robust transport technique called spatial adiabatic passage (SAP). Yu Loiko from the University of Barcelona, Spain, and colleagues have, for the first time, applied SAP to inject, extract, and filter the velocity of neutral atoms from and into a ring trap. Such traps are key to improving our understanding of phenomena involving ultra-cold atoms, which are relevant to high-precision applications such as atom optics, quantum metrology, quantum computation, and quantum simulation.

The authors focused on controlling the transfer of a single atom between the outermost waveguides of a system composed of two dipole waveguides and a ring trap, using the SAP technique. They calculated the explicit conditions for SAP tunnelling, which depend on two factors: the atomic velocity along the input waveguide and the initial atom population distribution among what physicists refer to as the transverse vibrational states.

To check the performance of the proposed approach, they relied on a numerical integration of the corresponding equation--namely the so-called two-dimensional Schrödinger--with parameter values for rubidium atoms and an optical dipole ring trap. Although the SAP technique had previously been reported on with regard to experiments using light beams, it had yet to be applied to the case of cold atoms.

Potential applications of these findings include the preparation of cold atom ring systems to investigate quantum phase transitions, matter wave Sagnac interferometry, the stability of persistent currents and superconducting quantum interference devices (SQUIDs), propagation of matter wave solitons and vortices, cold collisions, artificial electromagnetism, and others.
Reference: Y. Loiko, V. Ahufinger, R. Menchon-Enrich, G. Birkl and J. Mompart (2014), Coherent injecting, extracting, and velocity filtering of neutral atoms in a ring trap via spatial adiabatic passage, European Physical Journal D DOI 10.1140/epjd/e2014-40696-3

For more information visit: http://www.epj.org

The full-text article is available to journalists on request.


Related Physics Articles from Brightsurf:

Helium, a little atom for big physics
Helium is the simplest multi-body atom. Its energy levels can be calculated with extremely high precision only relying on a few fundamental physical constants and the quantum electrodynamics (QED) theory.

Hyperbolic metamaterials exhibit 2T physics
According to Igor Smolyaninov of the University of Maryland, ''One of the more unusual applications of metamaterials was a theoretical proposal to construct a physical system that would exhibit two-time physics behavior on small scales.''

Challenges and opportunities for women in physics
Women in the United States hold fewer than 25% of bachelor's degrees, 20% of doctoral degrees and 19% of faculty positions in physics.

Indeterminist physics for an open world
Classical physics is characterized by the equations describing the world.

Leptons help in tracking new physics
Electrons with 'colleagues' -- other leptons - are one of many products of collisions observed in the LHCb experiment at the Large Hadron Collider.

Has physics ever been deterministic?
Researchers from the Austrian Academy of Sciences, the University of Vienna and the University of Geneva, have proposed a new interpretation of classical physics without real numbers.

Twisted physics
A new study in the journal Nature shows that superconductivity in bilayer graphene can be turned on or off with a small voltage change, increasing its usefulness for electronic devices.

Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.

2D topological physics from shaking a 1D wire
Published in Physical Review X, this new study propose a realistic scheme to observe a 'cold-atomic quantum Hall effect.'

Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.

Read More: Physics News and Physics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.