Study reveals protective role for specialized cells in intestinal and respiratory systems

July 07, 2014

RIVERSIDE, Calif. - Ripping a page from the Star Trek script, specialized cells of the barrier that lines the inside of the intestines and airways of humans have invoked a biological version of Captain Kirk's famous command "shields up" as a first defense against invading microbes.

Research in the UCR School of Medicine laboratory of David Lo found that certain cells of the epithelium have a potentially important role in immune surveillance - creating an electrostatic repulsion field to microbial invasion.

The study is featured on the cover of the July issue of Infection and Immunity, a journal published by the American Society for Microbiology. Co-authors of the study are Kaila M. Bennett, one of Lo's graduate students, and Sharon L. Walker, a UCR professor of chemical and environmental engineering.

The finding improves scientists' understanding of the densely packed protrusions - resembling a carpet - on the surface of some cells that line the insides of the intestines and respiratory system. The protrusions, which biologists call microvilli, increase the surface area of cells and have a role in absorbing nutrients, for instance.

But Lo's laboratory has found that the microvilli actually repel negatively charged bacteria and viruses, suggesting a protective "shield" akin to the force field that envelops the Enterprise in the plots of many "Star Trek" television episodes and movies.

"This is a whole new way of looking at immune surveillance in the epithelium of the human gut and airway," said Lo, a distinguished professor in the medical school's Division of Biomedical Sciences. "If we can take advantage of this electrostatic repulsion, it could improve the diagnosis and treatment of certain bacterial infections."

A number of bacterial and viral infections can gain a foothold in the human body through adsorption via the intestines and airways, such as Salmonella and the flu.

Lo's laboratory has for more than a dozen years studied immune responses in the gut and airways, focusing particularly on cells which function as an early warning in the immune system. "We study the role of certain epithelial cells in the immune system. By understanding how the immune system is able to capture and carry viruses and bacteria across this barrier to trigger a protective immune, we may be able to design better synthetic vaccines, including needle-free vaccines," Lo said.

Lo joined UCR in 2006. In addition to his faculty position in the UCR School of Medicine Division of Biomedical Sciences, he is affiliated with the UCR Center for Disease Vector Research and the UC Global Health Institute. He is a fellow of the American Association for the Advancement of Sciences (2007) and a 2005 recipient of a "Grand Challenges in Global Health" award, Bill and Melinda Gates Foundation and the Foundation for the National Institutes of Health.
-end-
The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 21,000 students. The campus opened a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion. A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call (951) UCR-NEWS.

University of California - Riverside

Related Immune System Articles from Brightsurf:

How the immune system remembers viruses
For a person to acquire immunity to a disease, T cells must develop into memory cells after contact with the pathogen.

How does the immune system develop in the first days of life?
Researchers highlight the anti-inflammatory response taking place after birth and designed to shield the newborn from infection.

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.

Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.

COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.

Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.

Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.

Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.

How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.

Read More: Immune System News and Immune System Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.