Penn's immunotherapy for leukemia receives FDA's Breakthrough Therapy designation

July 07, 2014

PHILADELPHIA - A University of Pennsylvania-developed personalized immunotherapy has been awarded the U.S. Food and Drug Administration's Breakthrough Therapy designation for the treatment of relapsed and refractory adult and pediatric acute lymphoblastic leukemia (ALL). The investigational therapy, known as CTL019, is the first personalized cellular therapy for the treatment of cancer to receive this important classification.

In early-stage clinical trials at the Hospital of the University of Pennsylvania and the Children's Hospital of Philadelphia, 89 percent of ALL patients who were not responding to conventional therapies went into complete remission after receiving CTL019.

"Our early findings reveal tremendous promise for a desperate group of patients, many of whom have been able to return to their normal lives at school and work after receiving this new, personalized immunotherapy," said the Penn research team's leader, Carl June, MD, the Richard W. Vague Professor in Immunotherapy in the department of Pathology and Laboratory Medicine in the Perelman School of Medicine and director of Translational Research in the Abramson Cancer Center of the University of Pennsylvania. "Receiving the FDA's Breakthrough Designation is an essential step in our work with Novartis to expand this therapy to patients across the world who desperately need new options to help them fight this disease."

The FDA's Breakthrough Therapy designation, created in 2012, is intended to expedite the development and review of new medicines - both drugs and biologic agents - that treat serious or life-threatening conditions, if the therapy has demonstrated substantial improvement over available therapies. The FDA has previously granted Breakthrough Therapy to only four other biologic agents.

In August 2012, Penn announced an exclusive global research and licensing agreement with Novartis to further study, develop and commercialize personalized chimeric antigen receptor (CAR) T cell therapies for the treatment of cancers. Trials employing CTL019 began in the summer of 2010 in patients with relapsed and refractory chronic lymphocytic leukemia (CLL), and are now underway for adult and pediatric patients with ALL, and patients with non-Hodgkin lymphoma and myeloma. Penn and Novartis are also investigating the next generation of CAR therapies, with trials for mesothelioma, ovarian, breast and pancreatic cancer now in early stages.

During the 2013 annual meeting of the American Society of Hematology, the Penn research team announced study results of the first 27 ALL patients(22 children and five adults) treated with CTL019: 89 percent of the patients had a complete response to the therapy. The first pediatric ALL patient to receive the Penn therapy celebrated the second anniversary of her cancer remission in May, and the first adult patient remains in remission one year after receiving the therapy.

The investigational treatment pioneered by the Penn team begins by removing patients' T cells via an apheresis process similar to blood donation, then genetically reprogramming them in Penn's Clinical Cell and Vaccine Production Facility. After being infused back into patients' bodies, these newly built "hunter" cells both multiply and attack, targeting tumor cells that express a protein called CD19. Tests reveal that the army of hunter cells can grow to more than 10,000 new cells for each single engineered cell patients receive.

The adult ALL trials of CTL019 at the University of Pennsylvania's Abramson Cancer Center are directed by David Porter, MD, the Jodi Fisher Horowitz Professor in Leukemia Care Excellence and director of Blood and Marrow Transplantation in the Abramson Cancer Center and Noelle Frey, MD, MSCE, an assistant professor of Medicine in the Abramson Cancer Center. The pediatric ALL trials are led by Stephan Grupp, MD, PhD, a professor of Pediatrics and director of Translational Research in the Center for Childhood Cancer Research at the Children's Hospital of Philadelphia. Bruce Levine, PhD, the Barbara and Edward Netter Professor in Cancer Gene Therapy in the department of Pathology and Laboratory Medicine, directs Penn's Clinical Cell and Vaccine Production Facility.
-end-
Read more about the Breakthrough Therapy designation on the FDA website.

University of Pennsylvania School of Medicine

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.