Oncotarget: Epigenetic feedback and stochastic partitioning can drive resistance to EMT

July 07, 2020

OncotargetVolume 11, Issue 27 published "Epigenetic feedback and stochastic partitioning during cell division can drive resistance to EMT" by Jia et al. which reported that Epithelial-mesenchymal transition (EMT) and its reverse process mesenchymal-epithelial transition are central to metastatic aggressiveness and therapy resistance in solid tumors.

While molecular determinants of both processes have been extensively characterized, the heterogeneity in the response of tumor cells to EMT and MET inducers has come into focus recently, and has been implicated in the failure of anti-cancer therapies.

Recent experimental studies have shown that some cells can undergo an irreversible EMT depending on the duration of exposure to EMT-inducing signals.

While the irreversibility of MET, or equivalently, resistance to EMT, has not been studied in as much detail, evidence supporting such behavior is slowly emerging.

Here, the authors' identify two possible mechanisms that can underlie resistance of cells to undergo EMT: epigenetic feedback in ZEB1/GRHL2 feedback loop and stochastic partitioning of biomolecules during cell division.

Identifying the ZEB1/GRHL2 axis as a key determinant of epithelial-mesenchymal plasticity across many cancer types, the authors' use mechanistic mathematical models to show how GRHL2 can be involved in both the above mentioned processes, thus driving an irreversible MET. This study highlights how an isogenic population may contain subpopulation with varying degrees of susceptibility or resistance to EMT, and proposes a next set of questions for detailed experimental studies characterizing the irreversibility of MET/resistance to EMT.

Dr. Herbert Levine from The Center for Theoretical Biological Physics at Rice University as well as The Department of Physics at Northeastern University and Dr. Mohit Kumar Jolly from The Centre for BioSystems Science and Engineering at The Indian Institute of Science said "Epithelial-Mesenchymal Transition (EMT) is a cell biological process involved in driving cancer metastasis and therapy resistance?the two grand clinically unsolved challenges."

These hybrid E/M phenotypes may drive collective cell migration as clusters of tumor cells and can be more aggressive than cells in pure epithelial or mesenchymal phenotypes.

Recent experiments decoding the dynamics of EMT/MET using live-cell imaging and/or induction and withdrawal of various EMT-inducing external signals such as TGF? or tuning the levels of EMT-specific transcription factors have provided important insights into the reversibility of EMT and MET. Cells induced to undergo EMT for shorter durations may revert to an epithelial state after withdrawal of the signal/stimulus.

However, similar investigations about the irreversibility of MET, or in other words, the resistance of epithelial cells to undergo EMT in response to EMT-inducing signals, remain to be done.

Here, the authors' propose two independent mechanism that may explain the resistance of epithelial tumor cells to undergo EMT:

  1. 1) epigenetic feedback mediated via GRHL2?an MET-inducing transcription factor ; and
  2. 2) stochastic partitioning of parent cell biomolecules among the daughter cells at the time of cell division.
Conversely, here, the authors' show that incorporating this epigenetic feedback loop acting on the inhibition of ZEB1 by GRHL2 can cause an irreversible MET. Cells undergoing irreversible MET may exhibit resistance in undergoing EMT when exposed to EMT-inducing signals.

The Levine/Jolly Research Team concluded in their OncotargetResearch Paper that their results offer mechanistic insights into two possible mechanisms that may drive varying degrees of susceptibility and resistance to undergoing EMT in response to an EMT-inducing signal in a given isogenic population.

"Results offer mechanistic insights into two possible mechanisms that may drive varying degrees of susceptibility and resistance to undergoing EMT in response to an EMT-inducing signal in a given isogenic population."

Future efforts should decode the molecular mechanisms of any such epigenetic feedback of GRHL2 on ZEB1 expression as well as track the distribution of molecules during cell divisions happening while cells are being induced to undergo EMT/MET. Moreover, this study calls for concerted efforts to map the single-cell dynamics of MET induction.

Sign up for free Altmetric alerts about this article

DOI - https://doi.org/10.18632/oncotarget.27651

Full text - https://www.oncotarget.com/article/27651/text/

Correspondence to - Herbert Levine - h.levine@northeastern.edu and Mohit Kumar Jolly - mkjolly@iisc.ac.in.

Keywords - epithelial-mesenchymal transition, mesenchymal-epithelial transition, GRHL2, epigenetics, asymmetric cell division

About Oncotarget

Oncotarget is a weekly, peer-reviewed, open access biomedical journal covering research on all aspects of oncology.

To learn more about Oncotarget, please visit https://www.oncotarget.com or connect with:

SoundCloud -https://soundcloud.com/oncotarget
Facebook -https://www.facebook.com/Oncotarget/
Twitter -https://twitter.com/oncotarget
LinkedIn -https://www.linkedin.com/company/oncotarget
Pinterest -https://www.pinterest.com/oncotarget/
Reddit -https://www.reddit.com/user/Oncotarget/

Oncotarget is published by Impact Journals, LLC please visit http://www.ImpactJournals.com or connect with @ImpactJrnls

Impact Journals LLC

Related Cell Division Articles from Brightsurf:

Cell division: Cleaning the nucleus without detergents
A team of researchers, spearheaded by the Gerlich lab at IMBA, has uncovered how cells remove unwanted components from the nucleus following mitosis.

Genetic signature boosts protein production during cell division
A research team has uncovered a genetic signature that enables cells to adapt their protein production according to their state.

Inner 'clockwork' sets the time for cell division in bacteria
Researchers at the Biozentrum of the University of Basel have discovered a 'clockwork' mechanism that controls cell division in bacteria.

Scientists detail how chromosomes reorganize after cell division
Researchers have discovered key mechanisms and structural details of a fundamental biological process--how a cell nucleus and its chromosomal material reorganizes itself after cell division.

Targeting cell division in pancreatic cancer
Study provides new evidence of synergistic effects of drugs that inhibit cell division and support for further clinical trials.

Scientists gain new insights into the mechanisms of cell division
Mitosis is the process by which the genetic information encoded on chromosomes is equally distributed to two daughter cells, a fundamental feature of all life on earth.

Cell division at high speed
When two proteins work together, this worsens the prognosis for lung cancer patients: their chances of survival are particularly poor in this case.

Cell biology: The complexity of division by two
Ludwig-Maximilians-Universitaet (LMU) in Munich researchers have identified a novel protein that plays a crucial role in the formation of the mitotic spindle, which is essential for correct segregation of a full set of chromosomes to each daughter cell during cell division.

Better together: Mitochondrial fusion supports cell division
New research from Washington University in St. Louis shows that when cells divide rapidly, their mitochondria are fused together.

Seeing is believing: Monitoring real time changes during cell division
Scientist have cast new light on the behaviour of tiny hair-like structures called cilia found on almost every cell in the body.

Read More: Cell Division News and Cell Division Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.