African grey parrot is first bird to comprehend numerical concept akin to zero

July 08, 2005

Waltham, Mass. - A Brandeis University researcher has shown that an African grey parrot with a walnut-sized brain understands a numerical concept akin to zero - an abstract notion that humans don't typically understand until age three or four, and that can significantly challenge learning-disabled children

Strikingly, Alex, the 28-year-old parrot who lives in a Brandeis lab run by comparative psychologist and cognitive scientist Dr. Irene Pepperberg, spontaneously and correctly used the label "none" during a testing session of his counting skills to describe an absence of a numerical quantity on a tray. This discovery prompted a series of trials in which Alex consistently demonstrated the ability to identify zero quantity by saying the label "none."

Dr. Pepperberg's research findings, published in the current issue of The Journal of Comparative Psychology, add to a growing body of scientific evidence that the avian brain, though physically and organizationally somewhat different from the mammalian cortex, is capable of higher cognitive processing than previously thought. Chimpanzees and possibly squirrel monkeys show some understanding of the concept of zero, but Alex is the first bird to demonstrate an understanding of the absence of a numerical set, Dr. Pepperberg noted.

"It is doubtful that Alex's achievement, or those of some other animals such as chimps, can be completely trained; rather, it seems likely that these skills are based on simpler cognitive abilities they need for survival, such as recognition of more versus less," explained Dr. Pepperberg.

Alex had previously used the label "none" to describe an absence of similarity or difference between two objects, but he had never been taught the concept of zero quantity. "Alex has a zero-like concept; it's not identical to ours but he repeatedly showed us that he understands an absence of quantity," said Dr. Pepperberg.

Historically, the use of "zero" to label a null set has not always been obvious even in human cultures, which in many cases lacked a formal term for zero as recently as the late Middle Ages. The value of number research lies mainly in its ability to help determine the extent of animal cognition and animals' potential for more complex capacities. To that end, Dr. Pepperberg's studies on the avian brain are continuing with research into Alex's ability to count, as well as add and subtract small quantities.

Yet significantly, Dr. Pepperberg's research, which uses a training method called the model-rival technique, also holds promise for teaching autistic and other learning-disabled children who have difficulty learning language, numerical concepts and even empathy.

The model rival technique involves two trainers, one to give instructions, and one to model correct and incorrect responses and to act as the student's rival for the trainer's attention; the model and trainer also exchange roles so that the student sees that the process is fully interactive. The student, in this case, a middle-aged parrot, tries to reproduce the correct behavior. So far, results using this learning technique with small groups of autistic children, taught by Diane Sherman, PhD, in Monterey, CA, have been very promising, said Dr. Pepperberg.

"This kind of research is changing the way we think about birds and intelligence, but it also helps us break down barriers to learning in humans - and the importance of such strides cannot be underestimated," said Dr. Pepperberg.
-end-


Brandeis University

Related Learning Articles from Brightsurf:

Learning the language of sugars
We're told not to eat too much sugar, but in reality, all of our cells are covered in sugar molecules called glycans.

When learning on your own is not enough
We make decisions based on not only our own learning experience, but also learning from others.

Learning more about particle collisions with machine learning
A team of Argonne scientists has devised a machine learning algorithm that calculates, with low computational time, how the ATLAS detector in the Large Hadron Collider would respond to the ten times more data expected with a planned upgrade in 2027.

Getting kids moving, and learning
Children are set to move more, improve their skills, and come up with their own creative tennis games with the launch of HomeCourtTennis, a new initiative to assist teachers and coaches with keeping kids active while at home.

How expectations influence learning
During learning, the brain is a prediction engine that continually makes theories about our environment and accurately registers whether an assumption is true or not.

Technology in higher education: learning with it instead of from it
Technology has shifted the way that professors teach students in higher education.

Learning is optimized when we fail 15% of the time
If you're always scoring 100%, you're probably not learning anything new.

School spending cuts triggered by great recession linked to sizable learning losses for learning losses for students in hardest hit areas
Substantial school spending cuts triggered by the Great Recession were associated with sizable losses in academic achievement for students living in counties most affected by the economic downturn, according to a new study published today in AERA Open, a peer-reviewed journal of the American Educational Research Association.

Lessons in learning
A new Harvard study shows that, though students felt like they learned more from traditional lectures, they actually learned more when taking part in active learning classrooms.

Learning to look
A team led by JGI scientists has overhauled the perception of inovirus diversity.

Read More: Learning News and Learning Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.