New model for studying species distributions and the mid-domain effect developed

July 08, 2005

Understanding why some parts of the world sustain more species than others is one of the most enigmatic problems in ecology. One particularly common pattern is a "hump-shaped" biodiversity gradient: for example, biodiversity peaks near the equator and declines going either north or south.

Historically, explanations for such gradients invoked coincident geographical variation in environmental factors hypothesized to reduce extinction rates or promote the evolution of new species.

Recently, however, random re-arrangements ("randomizations") of species' distributions in geographical space have been shown to reproduce these hump-shaped gradients (termed "mid-domain effects").

Because randomizations do not explicitly include environmental factors, some have argued that such factors may be less important for biodiversity than previously thought. However, randomization analyses are controversial: critics argue that they are devoid of any ecological processes (not just environmental gradients), and thus have no explanatory utility.

Addressing this criticism requires models that make explicit biological assumptions about how species' distributional limits are determined, consistent with a particular hypothesized cause of biodiversity gradients.

In an article in the July 2005 issue of The American Naturalist, Sean R. Connolly (James Cook University) develops a general framework for such models and analyzes specific models that omit roles for variation in the quality of environmental conditions.

Under a very general set of conditions, these models are shown to produce mid-domain effects. These are qualitatively similar in shape, but of substantially lower magnitude, compared to randomization analyses. These results reveal that the mid-domain effect is likely to be a real phenomenon, and thus cannot be ignored, but that comparing real biodiversity patterns to those produced by randomizations may be misleading. They also identify an alternative way forward: formulating process-oriented models of species distributions and testing them directly against empirical data.
-end-
Sponsored by the American Society of Naturalists, The American Naturalist is a leading journal in the fields of ecology and evolutionary biology and animal behavior. For more information, please see our website: http://www.journals.uchicago.edu/AN.

Sean R. Connolly, "Process-Based Models of Species Distributions and the Mid-Domain Effect." 166:1 July 2005.

University of Chicago Press Journals

Related Biodiversity Articles from Brightsurf:

Biodiversity hypothesis called into question
How can we explain the fact that no single species predominates?

Using the past to maintain future biodiversity
New research shows that safeguarding species and ecosystems and the benefits they provide for society against future climatic change requires effective solutions which can only be formulated from reliable forecasts.

Changes in farming urgent to rescue biodiversity
Humans depend on farming for their survival but this activity takes up more than one-third of the world's landmass and endangers 62% of all threatened species.

Predicting the biodiversity of rivers
Biodiversity and thus the state of river ecosystems can now be predicted by combining environmental DNA with hydrological methods, researchers from the University of Zurich and Eawag have found.

About the distribution of biodiversity on our planet
Large open-water fish predators such as tunas or sharks hunt for prey more intensively in the temperate zone than near the equator.

Bargain-hunting for biodiversity
The best bargains for conserving some of the world's most vulnerable salamanders and other vertebrate species can be found in Central Texas and the Appalachians, according to new conservation tools developed at the National Institute for Mathematical and Biological Synthesis (NIMBioS) at the University of Tennessee, Knoxville.

Researchers solve old biodiversity mystery
The underlying cause for why some regions are home to an extremely large number of animal species may be found in the evolutionary adaptations of species, and how they limit their dispersion to specific natural habitats.

Biodiversity offsetting is contentious -- here's an alternative
A new approach to compensate for the impact of development may be an effective alternative to biodiversity offsetting -- and help nations achieve international biodiversity targets.

Biodiversity yields financial returns
Farmers could increase their revenues by increasing biodiversity on their land.

Biodiversity and wind energy
The location and operation of wind energy plants are often in direct conflict with the legal protection of endangered species.

Read More: Biodiversity News and Biodiversity Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.