Double identities lie behind chromosome disorders

July 08, 2007

Chromosome disorders in sex cells cause infertility, miscarriage and irregular numbers of chromosomes (aneuploidy) in neonates. A new study from Karolinska Institutet published in the scientific journal Nature Genetics shows how chromosome disorders can arise when sex cells are formed.

Sex cells contain a control station for monitoring the mechanism that ensures that the correct numbers of chromosomes are distributed during cell division. Scientists have now shown that there is an alternative distribution mechanism in female sex cells that cause chromosome disorders. Aberrant chromosomes orientate themselves like normal chromosomes, and this ability to adopt double identities protects them from detection by the control centre.

"We believe that this new fundamental mechanism can help to explain why chromosome disorders are so common in female sex cells," says Professor Christer Höög, leader of the study.

The research might eventually lead to new medical treatments able to reduce the risk of foetal damage.

Over 0.3 per cent of children are born with some kind of chromosome disorder. Most develop Downs Syndrome, or obtain the wrong number of sex chromosomes and develop Turner's or Klinefelter's syndrome. Turner's syndrome only occurs in females and is caused when one of the two X chromosomes is missing. Girls with Turner's have arrested development and if no treatment is given do not enter puberty. Klinefelter's syndrome affects males, who receive an extra X chromosome. Symptoms include concentration difficulties, poor motor skills and infertility.
-end-
Publication:
"Bi-orientation of achiasmatic chromosomes in mammalian MI oocytes contributes to aneuploidy"
Anna Kouznetsova, Lisa Lister, Magnus Nordenskjöld, Mary Herbert, Christer Höög
Nature Genetics, 8 July 2007

For further information, please contact:

Professor Christer Höög
Tel: +46 (0)8-524 873 65
Mobile: +46 (0)70- 511 27 58
E-mail: christer.hoog@ki.se

Press Officer Sabina Bossi
Tel: +46 (0)8-524 860 66
Mobile: +46 (0)70-614 60 66
E-mail: sabina.bossi@ki.se

Karolinska Institutet

Related Chromosomes Articles from Brightsurf:

Cancer's dangerous renovations to our chromosomes revealed
Cancer remodels the architecture of our chromosomes so the disease can take hold and spread, new research reveals.

Y chromosomes of Neandertals and Denisovans now sequenced
An international research team led by Martin Petr and Janet Kelso of the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, has determined Y chromosome sequences of three Neandertals and two Denisovans.

Female chromosomes offer resilience to Alzheimer's
Women live longer than men with Alzheimer's because their sex chromosomes give them genetic protection from the ravages of the disease.

New protein complex gets chromosomes sorted
Researchers from the University of Tsukuba have identified a novel protein complex that regulates Aurora B localization to ensure that chromosomes are correctly separated during cell division.

Breaking up is hard to do (especially for sex chromosomes)
A team of scientists at the Sloan Kettering Institute has discovered how the X and Y chromosomes find one another, break, and recombine during meiosis even though they have little in common.

Exchange of arms between chromosomes using molecular scissors
The CRISPR/Cas molecular scissors work like a fine surgical instrument and can be used to modify genetic information in plants.

How small chromosomes compete with big ones for a cell's attention
Scientists at the Sloan Kettering Institute have solved the puzzle of how small chromosomes ensure that they aren't skipped over during meiosis, the process that makes sperm and egg.

GPS for chromosomes: Reorganization of the genome during development
The spatial arrangement of genetic material within the cell nucleus plays an important role in the development of an organism.

Extra chromosomes in cancers can be good or bad
Extra copies of chromosomes are typical in cancerous tumor cells, but researchers taking a closer look find that some extra copies promote cancer growth while others actually inhibit cancer metastasis.

X marks the spot: recombination in structurally distinct chromosomes
A recent study from the laboratory of Stowers Investigator Scott Hawley, PhD, has revealed more details about how the synaptonemal complex performs its job, including some surprising subtleties in function.

Read More: Chromosomes News and Chromosomes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.