Bake, bake, bake a bone

July 08, 2008

Scientists have learnt many things from nature ?for example, the structure of a bone. Bones are very light but nonetheless able to withstand extremely heavy loads. The inside of a bone is like a sponge. It is particularly firm and compact in certain places, and very porous in others. The lightweight construction industry is especially interested in copying this construction method. Researchers at the Fraunhofer Institute for Manufacturing Engineering and Applied Materials Research therefore developed a simulation program that calculates the internal structure and density distribution of the bone material. From this, the scientists were able to derive the material structure for other components. The program simulates how the structure needs to be built in order to meet the specified requirements.

The researchers have now managed to put these simulations successfully into practice. Engineers can produce complex components with the aid of rapid prototyping technology. This involves coating a surface with wafer-thin layers of special metal powder. A laser beam heats ?or sinters ?the powdered metal in the exact places that need to be firm. "It's like baking a cake," says Andreas Burblies, spokesman for the Fraunhofer Numerical Simulation of Products, Processes Alliance. Any remaining loose powder is subsequently removed. "The end product is an open-pored element," explains Burblies. "Each point possesses exactly the right density and thus also a certain stability." The method allows the engineers to produce particularly lightweight components ?customized for each application ?that are also extremely robust. In the meantime, the researchers have further enhanced the process to the point where they can actually change the internal structure of the parts after production by means of precision drilling.

"We can manufacture and adapt the parts exactly as required," says Burblies. This makes the technique very attractive to a number of industries, among them the manufacturers of bone implants. It is easy to produce individual implants with an internal structure that resembles the patient's bone. Metal powders made of biomaterials such as titanium and steel alloys make it possible to reconstruct other bone elements, such as parts of the knee. And it goes without saying that the lightweight construction industry, especially aircraft, automobile and machine manufacturers, all benefit from the robust workpieces, as they are better able to withstand stress of every kind.
-end-


Fraunhofer-Gesellschaft

Related Bone Articles from Brightsurf:

Perforated bone tissue from too little sugar
Bone marrow cancer is currently an incurable disease that affects about 400 people in Norway every year.

Buzzing to rebuild broken bone
Healing broken bones could get easier with a device that provides both a scaffold for the bone to grow on and electrical stimulation to urge it forward, UConn engineers report.

Self-healing bone cement
Material scientists at the University of Jena have developed a bone replacement based on calcium phosphate cement and reinforced with carbon fibers.

Down to the bone: Understanding how bone-dissolving cells are generated
Bone-dissolving cells called osteoclasts are derived from a type of immune cells called macrophages.

Bone particles in blood
A researcher at The University of Texas at Arlington has found that blood vessels within bone marrow may progressively convert into bone with advancing age.

'Bone in a dish' opens new window on cancer initiation, metastasis, bone healing
Researchers in Oregon have engineered a material that replicates human bone tissue with an unprecedented level of precision, from its microscopic crystal structure to its biological activity.

UCI team pioneers cancer treatment that targets bone metastases while sparing bone
University of California, Irvine researchers have developed and tested on mice a therapeutic treatment that uses engineered stem cells to target and kill cancer bone metastases while preserving the bone.

Replicating fetal bone growth process could help heal large bone defects
To treat large gaps in long bones, like the femur, which often can result in amputation, researched developed a process in a rodent model that partially recreates the bone growth process that occurs before birth.

3D-printed 'hyperelastic bone' may help generate new bone for skull reconstruction
Defects of the skull and facial bones can pose difficult challenges for plastic and reconstructive surgeons.

From foam to bone: Plant cellulose can pave the way for healthy bone implants
Researchers from the University of British Columbia and McMaster University have developed what could be the bone implant material of the future: an airy, foamlike substance from plant cellulose that can be injected into the body and provide scaffolding for the growth of new bone.

Read More: Bone News and Bone Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.