Blur's noise and distortion reversed

July 08, 2009

Errant pixels and blurry regions in a photo, whether digital or scanned, are the bane of photographers everywhere. Moreover, in vision processing research degraded photos are common and require restoration to a high-quality undegraded state. Research published this month in the International Journal of Signal and Imaging Systems Engineering could provide new insights.

There are countless examples of image editors and photo cleanup software that have built-in tools designed to remove noise and sharpen up edges. Some of these are very powerful others less so. Any "cleanup" process that works by changing individual pixels leads to overall degradation of the image and loss of information. However, a delicate touch with the most subtle tools can produce acceptable quality results.

Now, S. Uma of the Department of Electronics and Communication Engineering, at Coimbatore Institute of Technology, and S. Annadurai of the Government College of Technology, Coimbatore, India, have turned to neural networks to help them clean up their image. The approach could significantly reduce information loss while reversing blurring caused by lens aberrations and faults and reducing noise that distorts the appearance of an image. The team suggests that distortions in an image due to atmospheric disturbances between camera and distant subjects could be unraveled and a photo taken on a hot, hazy day made acceptable.

The researchers point out that earlier attempts at this kind of inverse filtering of an image rely on the image having a high signal-to-noise (SNR) ratio. Other approaches require huge amounts of computing power and are generally untenable. This is especially true in the fledgling field of artificial vision, whether robotic or prosthetic. However, some success with neural networks has been achieved.

Now, Uma and Annadurai have developed a modified recurrent Hopfield neural network that builds and extends the work of others to allow them to quickly process an image reducing distortion, noise and blurring. The team has tested their approach on square grayscale images just 256 pixels across. They were able to reverse severe blurring and noise deliberately added to the original photographic sample to much more acceptable levels in a short time using limited computing resources than was possible with previous neural network approaches or any other inverse filtering techniques.

An analysis of the before and after quality shows that quality is improved by between 39% and 67% using the team's approach and results take half the time of other methods that produce lesser improvements. The success bodes well for image processing, in various fields including vision research, art, homeland security, and science.
"Image restoration using Modified Recurrent Hopfield Neural Network" in Int. J. Signal and Imaging Systems Engineering, 2009, 1, 264-272

Inderscience Publishers

Related Neural Networks Articles from Brightsurf:

Deep neural networks show promise for predicting future self-harm based on clinical notes
Medical University of South Carolina researchers report in JMIR Medical Informatics that they have developed deep learning models to predict intentional self-harm based on information in clinical notes.

Researchers develop new model of the brain's real-life neural networks
Researchers at the Cyber-Physical Systems Group at the USC Viterbi School of Engineering, in conjunction with the University of Illinois at Urbana-Champaign, have developed a new model of how information deep in the brain could flow from one network to another and how these neuronal network clusters self-optimize over time.

The brain's memory abilities inspire AI experts in making neural networks less 'forgetful'
Artificial intelligence (AI) experts at the University of Massachusetts Amherst and the Baylor College of Medicine report that they have successfully addressed what they call a ''major, long-standing obstacle to increasing AI capabilities'' by drawing inspiration from a human brain memory mechanism known as ''replay.''

New data processing module makes deep neural networks smarter
Artificial intelligence researchers have improved the performance of deep neural networks by combining feature normalization and feature attention modules into a single module that they call attentive normalization.

Neural cartography
A new x-ray microscopy technique could help accelerate efforts to map neural circuits and ultimately the brain itself.

Researchers study why neural networks are efficient in their predictions
A study has tested the predictions of a neural network to check whether they coincide with actual results.

Optimizing neural networks on a brain-inspired computer
Neural networks in both biological settings and artificial intelligence distribute computation across their neurons to solve complex tasks.

Teaching physics to neural networks removes 'chaos blindness'
Teaching physics to neural networks enables those networks to better adapt to chaos within their environment.

A clique away from more efficient networks
An old branch of mathematics finds a fertile new field of application.

Unravelling complex brain networks with automated 3D neural mapping
KAIST researchers developed a new algorithm for brain imaging data analysis that enables the precise and quantitative mapping of complex neural circuits onto a standardized 3D reference atlas.

Read More: Neural Networks News and Neural Networks Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to