Human sperm created from embryonic stem cells

July 08, 2009

Human sperm have been created using embryonic stem cells for the first time in a scientific development which will lead researchers to a better understanding of the causes of infertility.

Researchers led by Professor Karim Nayernia at Newcastle University and the NorthEast England Stem Cell Institute (NESCI) have developed a new technique which has made the creation of human sperm possible in the laboratory.

The work is published today (8th July 2009) in the academic journal Stem Cells and Development.

The NorthEast England Stem Cell Institute (NESCI) is a collaboration between Newcastle and Durham Universities, Newcastle NHS Foundation Trust and other partners.

Professor Nayernia says: "This is an important development as it will allow researchers to study in detail how sperm forms and lead to a better understanding of infertility in men - why it happens and what is causing it. This understanding could help us develop new ways to help couples suffering infertility so they can have a child which is genetically their own."

"It will also allow scientists to study how cells involved in reproduction are affected by toxins, for example, why young boys with leukaemia who undergo chemotherapy can become infertile for life - and possibly lead us to a solution."

The team also believe that studying the process of forming sperm could lead to a better understanding of how genetic diseases are passed on.

In the technique developed at Newcastle, stem cells with XY chromosomes (male) were developed into germline stem cells which were then prompted to complete meiosis - cell division with halving of the chromosome set. These were shown to produce fully mature, sperm called scientifically, In Vitro Derived sperm (IVD sperm).

In contrast, stem cells with XX chromosomes (female) were prompted to form early stage sperm, spermatagonia, but did not progress further. This demonstrates to researchers that the genes on a Y chromosome are essential for meiosis and for sperm maturation.

IVD sperm

The IVD sperm will not and cannot be used for fertility treatment. As well as being prohibited by UK law, the research team say fertilization of human eggs and implantation of embryos would hold no scientific merit for them as they want to study the process as a model for research.

"While we can understand that some people may have concerns, this does not mean that humans can be produced 'in a dish' and we have no intention of doing this. This work is a way of investigating why some people are infertile and the reasons behind it. If we have a better understanding of what's going on it could lead to new ways of treating infertility," adds Professor Nayernia.

Technique

The Newcastle University team have developed a method for establishing early stage sperm from human embryonic stem cells in the laboratory.

The embryonic stem cells were cultured in a new medium containing vitamin A derivative (retinoic acid), in a new technique established by the team. Based on this technique, the cells differentiated into germline stem cells.

These expressed a protein which was stained with a green fluorescent marker and they were separated out by FACSTM (Fluorescence-activated cell sorting) using a laser.

After further differentiation, these in vitro derived germline stem cells expressed markers which are specific to primordial germ cells, spermatogonial stem cells, meiotic (spermatocytes) and post meiotic germ cells (spermatids and sperm).

These results indicated maturation of the primordial germ cells to haploid male gametes - called IVD sperm - characterised by containing half a chromosome set (23 chromosomes).
-end-


Newcastle University

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.