Super-bright supernova with extreme burst of gamma radiation

July 08, 2015

Astronomers from the Niels Bohr Institute have observed a super-bright supernova association with a very unusual long lasting gamma-ray burst. Gamma-ray bursts are in rare cases observed in connection with supernovae, which are the deaths of massive stars and they usually only last a few minutes, but the new burst lasted more than half an hour. The supernova itself was extremely bright - more than three times as bright as the supernovae previously associated with gamma-ray bursts. The results are published in the scientific journal, Nature.

Gamma-ray bursts are powerful bursts of gamma radiation, which is ejected out into space in connection with massive stars that die in a violent supernova explosion. A gamma-ray burst is typically short and only lasts a few minutes. However, in recent years researchers have observed several long gamma-ray bursts lasting over a half an hour, but they had not yet been able to connect them with a supernova.

"We have now observed an ultra-long gamma-ray burst in excess of a half an hour and for the first time we have managed to connect it with a supernova," explains Johan Fynbo, a professor at the Dark Cosmology Centre at the Niels Bohr Institute at the University of Copenhagen.

He explains that they first observed the gamma-ray burst from the Swift telescope in space. Gamma radiation cannot be seen from Earth as the gamma rays are stopped by Earth's atmosphere. But as soon as you have the celestial position of the explosion, you start to observe the event from telescopes on Earth. Using the special GROND-instrument (which observes light in the visible and near-infrared wavelengths) on the 2.2 meter telescope at La Silla, a German-led research team managed to observe the afterglow from the gamma-ray burst over a period of 70 days.

15 times as bright

"We then observed the light with the X-shooter on the Very Large Telescope in Chile and the analysis of the spectra show that a very bright supernova is associated with the explosion. But the spectra look different than usual - they show that the radiating matter has a very high outflow velocity. We can therefore conclude that there was a very powerful explosion and that the supernova is about 15 times as bright as the supernovae we usually observe with the death of massive stars," says Giorgos Leloudas, a postdoc at the Dark Cosmology Centre at Niels Bohr Institute and the Weizmann Institute, Israel.

The combination of extreme brightness and a low content of heavy elements could indicate a massive star that releases extra energy in the death process. When the massive star dies, the core collapses into a neutron star that revolves very quickly and forms an extremely intense magnetic field. Such objects are called magnetars - a class of neutron stars that were first discovered by Chryssa Kouveliotou, who is a close collaborator with the gamma-ray burst group at the Dark Cosmology Centre at Niels Bohr Institute, which she frequently visits.

"A magnetar has a magnetic field that is in the realm of a billiard times stronger than the Earth's magnetic field (a 1 followed by 15 zeros). At the same time, these bizarre magnetars rotate several times per second and this is a gigantic reservoir of energy, which can facilitate a huge explosion, resulting in a particularly bright supernova and an extreme burst of gamma radiation, which is what we observe," explains Johan Fynbo.

The light from the super-bright supernova has travelled 6.4 billion years before it arrived at the Earth, so the incident took place about 7.3 billion years after the Big Bang.

Johan Fynbo, Professor, Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, +45 3532-5983, +45 2875-5983

Giorgos Leloudas, Postdoc, Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen and the Weizmann Institute, Israel, +45 3532-0337,

University of Copenhagen - Niels Bohr Institute

Related Magnetic Field Articles from Brightsurf:

Investigating optical activity under an external magnetic field
A new study published in EPJ B by Chengping Yin, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China, aims to derive an analytical model of optical activity in black phosphorous under an external magnetic field.

Magnetic field and hydrogels could be used to grow new cartilage
Instead of using synthetic materials, Penn Medicine study shows magnets could be used to arrange cells to grow new tissues

Magnetic field with the edge!
This study overturns a dominant six-decade old notion that the giant magnetic field in a high intensity laser produced plasma evolves from the nanometre scale.

Global magnetic field of the solar corona measured for the first time
An international team led by Professor Tian Hui from Peking University has recently measured the global magnetic field of the solar corona for the first time.

Magnetic field of a spiral galaxy
A new image from the VLA dramatically reveals the extended magnetic field of a spiral galaxy seen edge-on from Earth.

How does Earth sustain its magnetic field?
Life as we know it could not exist without Earth's magnetic field and its ability to deflect dangerous ionizing particles.

Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.

Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.

New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.

Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.

Read More: Magnetic Field News and Magnetic Field Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to