Nav: Home

Blood flow monitor could save lives

July 08, 2019

A tiny fibre-optic sensor has the potential to save lives in open heart surgery, and even during surgery on pre-term babies.

The new micro-medical device could surpass traditional methods used to monitor blood flow through the aorta during prolonged and often dangerous intensive care and surgical procedures - even in the tiniest of patients.

The continuous cardiac flow monitoring probe, under development at Flinders University, is a safe way to give a real-time measurement of blood flow.

"The minimally invasive device is suitable for neonates right through to adults," says research leader Strategic Professor John Arkwright, an expert in using fibre-optic technologies in medical diagnostics.

Professor Arkwright says the device has the potential to be a game-changer - particularly for very young babies, which are particularly susceptible to sudden drops in blood pressure and oxygen delivery to their vital organs.

"It's a far more responsive measurement compared to traditional blood flow monitoring - and without life-threatening delays in the period 'snapshot' provided by current blood flow practices using ultrasound or thermo-dilution."

Neonatal expert and co-investigator Dr Scott Morris, from the Flinders Medical Centre Neonatal Unit and Flinders University College of Medicine and Public Health, says the new sensor-catheter device promises to deliver accurate blood flow information in critically ill patients, from pre-term babies to cardiac bypass patients.

"This tiny device, which could even be used in pre-term infants, has the potential to be far superior to the intermittent measure of averaged blood flow delivered by traditional methods which generally only show time averaged flow every 30 minutes or so," Dr Morris says.

A provision patent has been filed for the device, which is seeking industry partners for further development.

Chief investigator Albert Ruiz-Vargas hopes the device will be picked up for further development, and introduction into regular intensive care and surgical procedures.

"The proof-of-concept prototype is potentially a low-cost device which has passed initial testing in a heart-lung machine," Dr Ruiz-Vargas says.

"It can be inserted through a small keyhole aperture in the skin into the femoral artery in individuals where heart function is compromised and is so small it can even measure small changes in flow in the tiny blood vessels of infants.

"It's a simple design, which can give readouts similar to a pulsating heartbeat response on a laptop or nearby screen."

For the first time, the Flinders researchers have found an effective model to continuously measure intra-pulse blood flow using a fibre-optic sensor which has the potential to advance monitoring in a medical setting.

They say more research is now required to determine how the sensor will behave under more physiological conditions and to examine different encapsulations to comply with human safety.
-end-
More information 'Optical flow sensor for continuous invasive measurement of blood flow velocity,' (May 2019) by Albert Ruiz-Vargas, Scott A Morris, Richard H Hartley and John W Arkwright, published in the Journal of Biophotonics (Wiley) https://doi.org/10.1002/jbio.201900139

Flinders University

Related Blood Flow Articles:

3D ultrasound enables accurate, noninvasive measurements of blood flow
A 3D ultrasound system provides an effective, noninvasive way to estimate blood flow that retains its accuracy across different equipment, operators and facilities, according to a new study.
Blood flow recovers faster than brain in micro strokes
Work by a Rice neurobiologist shows that increased blood flow to the brain is not an accurate indicator of neuronal recovery after a microscopic stroke.
Exercise improves memory, boosts blood flow to brain
Scientists have collected plenty of evidence linking exercise to brain health, with some research suggesting fitness may even improve memory.
3D VR blood flow to improve cardiovascular care
Biomedical engineers are developing a massive fluid dynamics simulator that can model blood flow through the full human arterial system at subcellular resolution.
MRI shows blood flow differs in men and women
Healthy men and women have different blood flow characteristics in their hearts, according to a new study.
Brain blood flow sensor discovery could aid treatments for high blood pressure & dementia
A study led by researchers at UCL has discovered the mechanism that allows the brain to monitor its own blood supply, a finding in rats which may help to find new treatments for human conditions including hypertension (high blood pressure) and dementia.
Blood flow monitor could save lives
A tiny fibre-optic sensor has the potential to save lives in open heart surgery, and even during surgery on pre-term babies.
Changes in blood flow tell heart cells to regenerate
Altered blood flow resulting from heart injury switches on a communication cascade that reprograms heart cells and leads to heart regeneration in zebrafish.
Blood flow command center discovered in the brain
An international team of researchers has discovered a group of cells in the brain that may function as a 'master-controller' for the cardiovascular system, orchestrating the control of blood flow to different parts of the body.
Researchers closer to new Alzheimer's therapy with brain blood flow discovery
By discovering the culprit behind decreased blood flow in the brain of people with Alzheimer's, biomedical engineers at Cornell University have made possible promising new therapies for the disease.
More Blood Flow News and Blood Flow Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.