Nav: Home

Study shows potential for reduced methane from cows

July 08, 2019

An international team of scientists has shown it is possible to breed cattle to reduce their methane emissions.

Published in the journal Science Advances, the researchers showed that the genetics of an individual cow strongly influenced the make-up of the microorganisms in its rumen (the first stomach in the digestive system of ruminant animals which include cattle and sheep).

"What we showed is that the level and type of methane-producing microbes in the cow is to a large extent controlled by the cow's genetic makeup," says one of the project's leaders and co-author Professor John Williams, from the University of Adelaide's School of Animal and Veterinary Sciences. "That means we could select for cattle which are less likely to have high levels of methane-producing bacteria in their rumen."

Cattle and other ruminants are significant producers of the greenhouse gas methane - contributing 37 per cent of the methane emissions resulting from human activity. A single cow on average produces between 70 and 120 kg of methane per year and, worldwide, there are about 1.5 billion cattle.

The study comes out of a project called RuminOmics, led by the Rowett Institute at the University of Aberdeen and involving the Parco Tecnologico Padano in Italy (where Professor Williams used to work), the Ben-Gurion University of the Negev in Israel, and a number of other institutions in Europe and the US.

The researchers analysed the microbiomes from ruminal fluid samples of 1000 cows, along with measuring the cows' feed intake, milk production, methane production and other biochemical characteristics. Although this study was carried out on dairy cows, the heritability of the types of microbes in the rumen should also apply to beef cattle.

"Previously we knew it was possible to reduce methane emissions by changing the diet," says Professor Williams. "But changing the genetics is much more significant - in this way we can select for cows that permanently produce less methane."

Professor Williams says breeding for low-methane cattle will, however, depend on selection priorities and how much it compromises selection for other desired characteristics such as meat quality, milk production or disease resistance.

"We now know it's possible to select for low methane production," he says. "But it depends on what else we are selecting for, and the weighting that is placed on methane - that's something that will be determined by industry or society pressures."

The researchers also found a correlation, although not as high, between the cows' microbiomes and the efficiency of milk production.

"We don't yet know, but if it turned out that low-methane production equated to greater efficiencies of production - which could turn out to be true given that energy is required to produce the methane - then that would be a win, win situation," Professor Williams says.
-end-
This research, from the Davies Research Centre at the University of Adelaide's Roseworthy campus, aligns with the University's industry engagement priority in agrifood and wine, and in tackling the grand challenge of environmental sustainability.

Media Contact:

Robyn Mills, Media Officer. Phone: +61 8 8313 6341, Mobile: +61 (0)410 689 084, robyn.mills@adelaide.edu.au

University of Adelaide

Related Methane Articles:

Microbial fuel cell converts methane to electricity
Transporting methane from gas wellheads to market provides multiple opportunities for this greenhouse gas to leak into the atmosphere.
Methane seeps in the Canadian high Arctic
Cretaceous climate warming led to a significant methane release from the seafloor, indicating potential for similar destabilization of gas hydrates under modern global warming.
Methane emissions from trees
A new study from the University of Delaware is one of the first in the world to show that tree trunks in upland forests actually emit methane rather than store it, representing a new, previously unaccounted source of this powerful greenhouse gas.
Oil production releases more methane than previously thought
Emissions of methane and ethane from oil production have been substantially higher than previously estimated, particularly before 2005.
Bursts of methane may have warmed early Mars
The presence of water on ancient Mars is a paradox.
New method for quantifying methane emissions from manure management
The EU Commision requires Denmark to reduce drastically emissions of greenhouse gases from agriculture.
New 3-D printed polymer can convert methane to methanol
Lawrence Livermore National Laboratory scientists have combined biology and 3-D printing to create the first reactor that can continuously produce methanol from methane at room temperature and pressure.
Arctic Ocean methane does not reach the atmosphere
250 methane flares release the climate gas methane from the seabed and into the Arctic Ocean.
Long-sought methane production mechanism identified
Researchers have identified the mechanism by which bacteria create methane, a potent greenhouse gas.
Retreat of the ice followed by millennia of methane release
Methane was seeping from the seafloor for thousands of years following the retreat of the Barents Sea ice sheet, shows a groundbreaking new study in Nature Communications.

Related Methane Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...