Nav: Home

Window film could even out the indoor temperature using solar energy

July 08, 2019

A window film with a specially designed molecule could be capable of taking the edge off the worst midday heat and instead distributing it evenly from morning to evening. The molecule has the unique ability to capture energy from the sun's rays and release it later as heat. This is shown by researchers at Chalmers University of Technology, Sweden, in the scientific journal Advanced Science.

On sunny summer days it can be little short of unbearable to stay indoors or in cars. The heat radiates in and creates an unpleasantly high temperature for people, animals and plants. Using energy-intensive systems such as air conditioning and fans means combating the thermal energy with other forms of energy. Researchers at Chalmers University of Technology are proposing a method that utilises the heat and distributes it evenly over a longer period instead.

When their specially designed molecule is struck by the sun's rays it captures photons and simultaneously changes form - it is isomerised. When the sun stops shining on the window film the molecules release heat for up to eight hours after the sun has set.

"The aim is to create a pleasant indoor environment even when the sun is at its hottest, without consuming any energy or having to shut ourselves behind blinds. Why not make the most of the energy that we get free of charge instead of trying to fight it," says chemist Kasper Moth-Poulsen, who is leading the research.

At dawn when the film has not absorbed any solar energy it is yellow or orange, since these colours are the opposite of blue and green, which is the light spectrum that the researchers have chosen to capture from the sun. When the molecule captures solar energy and is isomerised, it loses its colour and then becomes entirely transparent. As long as the sun is shining on the film it captures energy, which means that not as much heat penetrates through the film and into the room. At dusk, when there is less sunlight, heat starts to be released from the film and it gradually returns to its yellow shade and is ready to capture sunlight again the following day.

"For example, airports and office complexes should be able to reduce their energy consumption while also creating a more pleasant climate with our film, since the current heating and cooling systems often do not keep up with rapid temperature fluctuations," says Moth-Poulsen.

The molecule is part of a concept the research team calls MOST, which stands for 'Molecular Solar Thermal Storage'. Previously the team presented an energy system for houses based on the same molecule. In that case - after the solar energy had been captured by the molecule - it could be stored for an extended period, such as from summer to winter, and then used to heat an entire house. The researchers realised that they could shorten the step to application by optimising the molecule for a window film as well, which would also create better conditions for the slightly more complex energy system for houses.

What the researchers still have to do is to increase the concentration of the molecule in the film whilst also retaining the film's properties, and bring down the price of the molecule. But according to Moth-Poulsen they are very close to this innovation.

"The step to applying our film is so short that it could happen very soon. We are at a very exciting stage with MOST," he says.
-end-
More about the research:

A video about the window film: https://youtu.be/7_FQMOStDdA

The research has been funded by the Australian Research Council, the Knut and Alice Wallenberg Foundation and the Swedish Strategic Research Foundation.

It is presented in the paper "Solar Energy Storage by Molecular Norbornadiene-Quadricyclane Photoswitches: Polymer Film Devices":

https://onlinelibrary.wiley.com/doi/full/10.1002/advs.201900367

Chalmers University of Technology

Related Solar Energy Articles:

Mapping the energy transport mechanism of chalcogenide perovskite for solar energy use
Researchers from Lehigh University have, for the first time, revealed first-hand knowledge about the fundamental energy carrier properties of chalcogenide perovskite CaZrSe3, important for potential solar energy use.
New hybrid device can both capture and store solar energy
Researchers have reported a new device that can both efficiently capture solar energy and store it until it is needed, offering promise for applications ranging from power generation to distillation and desalination.
Materials that can revolutionize how light is harnessed for solar energy
Columbia scientists designed organic molecules capable of generating two excitons per photon of light, a process called singlet fission.
Solar energy becomes biofuel without solar cells
Soon we will be able to replace fossil fuels with a carbon-neutral product created from solar energy, carbon dioxide and water.
20 overlooked benefits of distributed solar energy
A study released today provides the most complete list yet of the advantages of solar energy -- from carbon sequestration to improvements for pollinator habitat.
Window film could even out the indoor temperature using solar energy
A window film with a specially designed molecule could be capable of taking the edge off the worst midday heat and instead distributing it evenly from morning to evening.
Danish researchers create worldwide solar energy model
For any future sustainable energy system, it is crucial to know the performance of photovoltaic (solar cell) systems at local, regional and global levels.
Novel thermoelectric nanoantenna design for use in solar energy harvesting
In an article published in the SPIE Journal of Nanophotonics (JNP), researchers from a collaboration of three labs in Mexico demonstrate an innovative nanodevice for harvesting solar energy.
Improving the lifetime of bioelectrodes for solar energy conversion
The use of proteins involved in the photosynthetic process enables the development of affordable and efficient devices for energy conversion.
Caffeine gives solar cells an energy boost
Scientists from the University of California, Los Angeles (UCLA) and Solargiga Energy in China have discovered that caffeine can help make a promising alternative to traditional solar cells more efficient at converting light to electricity.
More Solar Energy News and Solar Energy Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab