Nav: Home

Development of 3D particle model for single particles in battery electrodes

July 08, 2019

A model that can have a 3D observation of micrometer-sized particles in a cell has been developed. Through the analysis and research of micrometer-sized particles in a cell, this model is expected to enhance energy efficiency of cells.

DGIST announced that Professor Yong Min Lee's team in the Department of Energy Science & Engineering developed 'micron1 single particle electrochemical model' that can estimate the electrochemical properties of a single particle of electrode active materials2 in 3D. The 3D observations of the single particles of electrode active materials, which are difficult to be identified in an experiment, are expected to be applied to research electrochemical phenomena and particle designs that enhance cell efficiency.

Although a secondary cell is commonly used as the power source of electric vehicles, it is still not as efficient as internal combustion engine. Its efficiency can be improved by increasing the energy density of the cells, R&D has not been actively carried out due to the limitations in precise analysis technology.

Professor Lee's team thought that the energy density of a cell can be enhanced through the design optimization of electrode active materials in a cell. Then, they sought a way to examine the micrometer-sized single particles of electrode active materials and developed electrochemical model that can conduct 3D analysis on the single particles.

Unlike the existing model that focused on cell electrode, the model developed by Professor Yong Min Lee's team focused on the single particles of active materials that compose electrode. By doing so, the team took another step closer to a research to fundamentally increase cell efficiency through accurate analysis on the properties and characteristics of 3D single particles in a model. Since it can have 3D analysis of particles, the model is especially expected to be applied widely in research to design the single particles of electrode active materials in a cell.

Regarding this research, Professor Yong Min Lee in the Department of Energy Science and Engineering said "Comparing to previous works, our model can look into what happens within a single particle. As a result, it provides an innovative way in designing micrometer-sized particles. Our next goal is to apply this electrochemical model to improve the cell efficiency of electric vehicles."
-end-
This research was carried out by Jihun Song (who is currently an integrated M.S.-Ph.D. candidate) and Joonam Park (a Ph.D. candidate) as the co-authors, and it was jointly conducted with Tokyo Metropolitan University (Professor Hirokazu Munakata and Professor Kiyoshi Kanamura), Chungnam National University (Professor Sung-Soo Kim), and Hanbat National University (Professor Myung-Hyun Ryou). The result was published on June 4th in the online version of Nano Energy, an international journal on energy materials.

1 Micron: A length unit defined in 10-6 m and is marked as μm

2 Electrode active material: A material involved in an electrode reaction of a cell

DGIST (Daegu Gyeongbuk Institute of Science and Technology)

Related Engineering Articles:

Engineering a new cancer detection tool
E. coli may have potentially harmful effects but scientists in Australia have discovered this bacterium produces a toxin which binds to an unusual sugar that is part of carbohydrate structures present on cells not usually produced by healthy cells.
Engineering heart valves for the many
The Wyss Institute for Biologically Inspired Engineering and the University of Zurich announced today a cross-institutional team effort to generate a functional heart valve replacement with the capacity for repair, regeneration, and growth.
Geosciences-inspired engineering
The Mackenzie Dike Swarm and the roughly 120 other known giant dike swarms located across the planet may also provide useful information about efficient extraction of oil and natural gas in today's modern world.
Engineering success
Academically strong, low-income would-be engineers get the boost they need to complete their undergraduate degrees.
HKU Engineering Professor Ron Hui named a Fellow by the UK Royal Academy of Engineering
Professor Ron Hui, Chair Professor of Power Electronics and Philip Wong Wilson Wong Professor of Electrical Engineering at the University of Hong Kong, has been named a Fellow by the Royal Academy of Engineering, UK, one of the most prestigious national academies.
Engineering a better biofuel
The often-maligned E. coli bacteria has powerhouse potential: in the lab, it has the ability to crank out fuels, pharmaceuticals and other useful products at a rapid rate.
Pascali honored for contributions to engineering education
Raresh Pascali, instructional associate professor in the Mechanical Engineering Technology Program at the University of Houston, has been named the 2016 recipient of the Ross Kastor Educator Award.
Scaling up tissue engineering
A team at the Wyss Institute for Biologically Inspired Engineering at Harvard University and the Harvard John A.
Engineering material magic
University of Utah engineers have discovered a new kind of 2-D semiconducting material for electronics that opens the door for much speedier computers and smartphones that also consume a lot less power.
Engineering academic elected a Fellow of the IEEE
A University of Bristol academic has been elected a Fellow of the world's largest and most prestigious professional association for the advancement of technology.

Related Engineering Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...