Nav: Home

Cave droplets provide window into past climates

July 08, 2019

The chemistry of drip waters that form stalagmites and stalactites in caves around the world have given researchers an insight into our past climate.

In the first ever global analysis of cave drip water, an international team, led by Andy Baker at UNSW Australia and including scientists from Cardiff University, have explored how stalagmites and stalactites can show how groundwater resources have recharged in the past.

Groundwater, found underground in the cracks and pore spaces in rocks and sediments, is the largest source of usable freshwater in the world, and is relied on by more than two billion people as a source of drinking and irrigation water.

Groundwater resources are replenished predominantly through rainfall in a process known as recharge. At the same time, water exits or discharges from groundwater resources into lakes, streams and oceans to maintain an overall balance.

If there is a change in recharge, for example due to a reduction in rainfall as a result of climate change, the levels of water in the ground will begin to change until a new balance is achieved.

However, questions remain about how groundwater will be specifically impacted by future climate change, and where and when any changes will take place.

Though it has historically been difficult to determine past groundwater changes, scientists have recently made progress using new methods involving stalactites and stalagmites.

The oxygen isotope composition of stalagmites and stalactites found in caves can hold valuable clues about our past climate.

This oxygen comes from the water dripping from the stalactites and onto the stalagmites. The drip water originally comes from rainfall, providing a direct link to the surface climate.

Understanding the extent to which the oxygen isotopic composition of drip water is related to rainfall is a fundamental research question which will unlock the full climate potential of stalagmites and stalactites.

In their study, which has been published in Nature Communications, the team explored 163 sites from 39 caves on five continents, comparing the oxygen isotope composition of drip water to that of rainfall and groundwater recharge.

In cool climates, cave drip water oxygen isotope composition was similar to that of rainfall, meaning that stalagmite oxygen isotopes might best preserve past rainfall in these regions.

In warmer climates, and strongly seasonal climates, cave drip water oxygen isotope composition was similar to that of modelled groundwater recharge, meaning the records are more likely to preserve a record of past groundwater recharge.

Dr Mark Cuthbert, from Cardiff University's School of Earth and Ocean Sciences, and co-author of the study, said: "These results are particularly important for interpreting records of past groundwater recharge from stalagmites in dryland regions. This can help us understand the relationship between climate variability and water resources in naturally water scarce parts of the world and inform water management strategies in the context of climate change."
-end-
Notes to editors

1. For further information contact
Michael Bishop
Cardiff University
Tel: 02920 874499/07713325300
Email: bishopm1@cardiff.ac.uk

2. Cardiff University is recognised in independent government assessments as one of Britain's leading teaching and research universities and is a member of the Russell Group of the UK's most research intensive universities. The 2014 Research Excellence Framework ranked the University 5th in the UK for research excellence. Among its academic staff are two Nobel Laureates, including the winner of the 2007 Nobel Prize for Medicine, Professor Sir Martin Evans. Founded by Royal Charter in 1883, today the University combines impressive modern facilities and a dynamic approach to teaching and research. The University's breadth of expertise encompasses: the College of Arts, Humanities and Social Sciences; the College of Biomedical and Life Sciences; and the College of Physical Sciences and Engineering, along with a longstanding commitment to lifelong learning.

Cardiff University

Related Climate Change Articles:

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.
Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.
Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.
Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
Predicting climate change
Thomas Crowther, ETH Zurich identifies long-disappeared forests available for restoration across the world.
More Climate Change News and Climate Change Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.