Nav: Home

Evolutionary coupling analysis identifies the impact of disease-associated variants

July 08, 2019

Predicting the impact of DNA sequence variants is important for sorting disease-associated variants (DVs) from neutral variants. Korean researchers at Pohang University of science and technology (POSTECH) report the development of a method to predict the impact of DVs. The study appears in the journal Nucleic Acids Research in June.

Current methods to predict the mutational impacts depend on evolutionary conservation at the mutation site, which is determined using homologous sequences and based on the assumption that variants at well-conserved sites have high impacts. However, many DVs at less-conserved but functionally important sites cannot be predicted by the current methods.

The researchers present a method to find DVs at less-conserved sites by predicting the mutational impacts using evolutionary coupling analysis. Functionally important and evolutionarily coupled sites often have compensatory variants on cooperative sites to avoid loss of function. They identified DVs at less-conserved sites that were not identified using current conservation-based methods.

Prof. Kim said that "This study can be applied to a variety of precision medicine approaches such as prognosis of patient's diseases and finding personalized medicine." "Based on a large scale sequence analysis, the developed method is useful to find more disease associated variants which help to find biomarkers and therapeutic targets of various human diseases."
-end-


Pohang University of Science & Technology (POSTECH)

Related Diseases Articles:

A culprit of thyroid's diseases
How thyroid and its vascular system coordinate themselves and remodel during thyroid disease.
Synthetic carbohydrates against autoimmune diseases
Researchers are developing an innovative approach for the treatment of a rare autoimmune disease of the peripheral nervous system, using a type of molecular sponge consisting of carbohydrates to remove pathogenic antibodies from the bloodstream.
Changes of the cell environment are associated with certain eye diseases
In case of ischemic injury to the retina, changes occur in the protein scaffold in the environment of retinal cells, the so-called extracellular matrix.
Stepping up the hunt for genetic diseases
The child's own genome thus consists of a maternal and a paternal genome.
Molecular patterns of complex diseases
The Helmholtz Zentrum M√ľnchen has published results of the largest genome-wide association study on proteomics to date.
More Diseases News and Diseases Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...