Nav: Home

'Liquid forensics' could lead to safer drinking water

July 08, 2019

Ping! The popular 1990 film, The Hunt for Red October, helped introduce sonar technology on submarines to pop culture. Now, nearly 30 years later, a team of scientists at the University of Missouri is using this same sonar technology as inspiration to develop a rapid, inexpensive way to determine whether the drinking water is safe to consume. Based on their results, the scientists said they can determine changes in the physical properties of liquids.

"If the water isn't drinkable, then our method will tell you that something is wrong with the water," said Luis Polo-Parada, an associate professor of pharmacology and physiology in the MU School of Medicine and investigator at the MU Dalton Cardiovascular Research Center. "For instance, if a facility removes salt from sea water in order for water to be safe for drinking, our method can help alert the facility to potential changes such as an issue with the desalination process."

The instrument is designed to analyze the quality of liquids using the photoacoustic effect, or the generation of sound waves after light is absorbed in a material. Drops of sea water, dairy milk or ionic liquids, a class of molten salt, were used in the study. The MU scientists believe this might be the first use of this technology to analyze such small liquid samples.

"Let's use cymbals as an analogy," said Gary A. Baker, associate professor of chemistry in the MU College of Arts and Science. "Sunlight causes the cymbals to heat up and create a constant ringing sound. Here, on a much smaller scale, we create the same effect by sending flashes of laser light at our tiny homemade cymbal, which is the tape, and measure the speed of the sound that is generated."

The team is working to refine its recording methods and equipment to provide commercial industries with an inexpensive way to monitor the quality of liquids, such as the percentage of alcohol in alcoholic beverages, the amount of inferior oil in fraudulent olive oils, the quality of honey and the amount of sugar or sugar substitutes in soft drinks. They plan to publish updated results later this year.

How it works: A tattoo removal laser machine sends out a series of brief flashes of light each lasting about 10 nanoseconds. The flashes of light travel through a fiber optic cable wrapped on one end with paint-on liquid electrical tape. The cable's end, submerged in the liquid, converts the laser light into sound. The sound is recorded by a microphone and the data is analyzed in real time.
-end-
The study, "Laser-induced sound pinging: A rapid photoacoustic method to determine the speed of sound in microliter fluid volumes," was published in Sensors and Actuators, B: Chemical. Other authors on this study include Jennifer A. Kist, Laxmi Adhikari and Nakara Bhawawet of the Department of Chemistry in the MU College of Arts and Science; and Gerardo Gutiérrez-Juárez of the División de Ciencias e Ingenierías-Campus León, Universidad de Guanajuato, Mexico. Funding was partially supported by Consejo Nacional de Ciencia y Tecnología-México (Fronteras de la Ciencia-2016, Grant No. 2029). The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies.

University of Missouri-Columbia

Related Drinking Water Articles:

Solar power with a free side of drinking water
An integrated system seamlessly harnesses sunlight to cogenerate electricity and fresh water.
'Liquid forensics' could lead to safer drinking water
Ping! The popular 1990 film, The Hunt for Red October, helped introduce sonar technology on submarines to pop culture.
Progress in hunt for unknown compounds in drinking water
When we drink a glass of water, we ingest an unknown amount of by-products that are formed in the treatment process.
Arsenic in drinking water may change heart structure
Among young adults, drinking water contaminated with arsenic may lead to structural changes in the heart that raise their risk of heart disease.
Not drinking water associated with consuming more calories from sugary drinks
This study examined how drinking water was associated with the amount of calories children, adolescents and young adults consume from sugar-sweetened beverages, including sodas, fruit drinks and sports drinks.
Not drinking water may boost kids' consumption of sugary beverages
Kids and young adults who drink no water throughout the day may consume twice the amount of calories from sugary drinks than those who drink water, according to Penn State researchers.
Drinking water sucked from the dusty desert air
An inexpensive hydrogel-based material efficiently captures moisture even from low-humidity air and then releases it on demand.
Drinking more water reduces bladder infections in women
Drinking an additional 1.5 liters of water daily can reduce recurring bladder infections in premenopausal women by nearly half, a yearlong study of otherwise healthy women with a history of repeated infections has found.
Viruses discern, destroy E. coli in drinking water
To rapidly detect the presence of E. coli in drinking water, Cornell University food scientists now can employ a bacteriophage -- a genetically engineered virus -- in a test used in hard-to-reach areas around the world.
Chemicals that keep drinking water flowing may also cause fouling
Many city drinking water systems add softening agents to keep plumbing free of pipe-clogging mineral buildup.
More Drinking Water News and Drinking Water Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.