CNIO researchers discover that the rate of telomere shortening predicts species lifespan

July 08, 2019

A flamingo lives 40 years and a human being lives 90 years; a mouse lives two years and an elephant lives 60. Why? What determines the lifespan of a species? After analyzing nine species of mammals and birds, researchers at the Spanish National Cancer Research Center (CNIO) found a very clear relationship between the lifespan of these species and the shortening rate of their telomeres, the structures that protect the chromosomes and the genes they contain. The relationship is expressed as a mathematical equation, a formula that can accurately predict the longevity of the species. The study was done in collaboration with the Madrid Zoo Aquarium and the University of Barcelona.

"The telomere shortening rate is a powerful predictor of species lifespan," the authors write in the prestigious journal Proceedings of the National Academy of Sciences (PNAS).

The study compares the telomeres of mice, goats, dolphins, gulls, reindeer, vultures, flamingos, elephants and humans, and reveals that species whose telomeres shorten faster have shorter lives.

The relationship can be fitted to a certain type of mathematical curve -a power law curve-, which, the authors explain in PNAS, is also used to describe other processes such as population growth, city sizes, species extinction, body mass, and individual income.

To Maria Blasco, Head of the Telomeres and Telomerase Group of the CNIO and director of the study, the fact that there is such a clear relationship between the rate of telomere shortening and lifespan suggests that "we have found a universal pattern, a biological phenomenon that explains the lifespan of the species, and that warrants more research."

What counts is not their length, but the rate at which they shorten

In the case of the relationship between telomere shortening and species longevity, the curve found by the CNIO researchers fits the data very well. In fact, "the equation can be used to predict the lifespan of the species solely based on the rate of telomere shortening," the authors write. The fit is better when using the average lifespan of the species -79 years in the case of humans-, rather than the maximum lifespan -the 122 documented years lived by the Frenchwoman Jeanne Calment-.

It has been known for quite some time, thanks in large part to the work of Blasco's group, that telomeres are at the basis of aging of the organism. Telomeres make up the ends of chromosomes, inside the cell nucleus; their function is to protect the genes. However, each time the cells multiply to repair damage, their telomeres become a little shorter. Throughout life, it may happen that the telomeres shorten too much and cannot regenerate anymore. When that happens, the cell stops functioning normally.

Until now, however, no relationship had been found between telomere length and lifespan of each species. There are species with very long telomeres that are short-lived and vice versa.

The CNIO researchers decided not to compare the absolute length of the telomeres, but rather their rate of shortening. It is the first large-scale study that compares this highly variable parameter between species: human telomeres lose on average about 70 base pairs -the building blocks of the genetic material- per year, whereas those of mice lose about 7,000 base pairs per year.

To Kurt Whittemore, first author of the paper, this study confirms that telomeres play an important role in aging: "There are people who are not convinced, and they say that for example mice live two years and have very long telomeres, while humans live much longer and have short telomeres; but we have shown that the important thing is not the initial length but the rate of shortening and this parameter predicts the longevity of a species with a high degree of precision."

A better predictor than body size or heart rate

The measurements were made in blood samples from several individuals of nine species, mostly of the Zoo Aquarium in Madrid. The samples of the Audouin's gulls come from a wild colony in the Ebro Delta and were analyzed in collaboration with the University of Barcelona. The researchers measured in each species the telomeres in the white blood cells of individuals of different ages.

In the Zoo Aquarium of Madrid, the following species were studied: nine dolphins between 8.6 and 50.1 years old; 15 goats between 0.8 and 10.1 years old; eight reindeer from 1.4 to 10.5 years old; 15 flamingos between 0.8 and 50.1 years old; 6 vultures between 8.1 and 21.4 years old; four Sumatran elephants between 6.1 and 24.7 years old; -ringed- gulls between 0 and 24 years old; and 7 mice between 1.4 and 2.6 years old. The age of the gulls was determined from the rings with which they were banded when they were chicks, and that allow the identification of the individuals throughout their life. In collaboration with the veterinary team of the Madrid Zoo Aquarium and in several species, such as elephants and dolphins, through medical training of the animals so that they collaborate voluntarily in the examinations, blood samples were taken during their usual health monitoring.

The results indicate that the rate of telomere shortening predicts the longevity of species much better than other parameters considered thus far, such as body weight -in general, smaller species tend to live shorter- or heart rate.

The authors of the study believe that one of the next steps required is to study species that are very long-lived for their size, such as the naked mole rat or the bat.

In any case, "these findings support the notion that critical telomere shortening and the consequent onset of telomeric DNA damage and cellular senescence is a general determinant of the lifespan of species," the authors write in PNAS.
The study has been funded by the Spanish Ministry of Science, Innovation and Universities, the National Institute of Health Carlos III, and the Botín Foundation and Banco Santander through Santander Universities.

Reference article:Telomere shortening rate predicts species lifespan. Kurt Whittemore, Elsa Vera, Eva Martínez-Nevado, Carola Sanpera, Maria A. Blasco (PNAS, 2019). DOI:

Centro Nacional de Investigaciones Oncológicas (CNIO)

Related Telomeres Articles from Brightsurf:

Born to be young?
The environment we experience in early-life is known to have major consequences on later-life health and lifespan.

Scientists home in on the mechanism that protects cells from premature aging
A new study by EPFL researchers shows how RNA species called TERRA muster at the tip of chromosomes, where they help to prevent telomere shortening and premature cell aging.

The CNIO discovers that rapamycin has harmful effects when telomeres are short
The CNIO shows that an anti-aging strategy that extends life in normal mice, the treatment with rapamycin, is harmful when mice have short telomeres.

Drinking 1% rather than 2% milk accounts for 4.5 years of less aging in adults
A new study shows drinking low-fat milk -- both nonfat and 1% milk -- is significantly associated with less aging in adults.

Crick researchers unravel protective properties of telomere t-loops
Loops at the ends of telomeres play a vital protective role preventing irretrievable damage to chromosomes, according to new research from the Crick.

CNIO researchers obtain the first mice born with hyper-long telomeres
Mice with hyper-long telomeres live, on average, 13% longer and in better health, free from cancer and obesity The study has found for the first time ever a clear relationship between the length of telomeres and insulin and glucose metabolism, which are also crucial in ageing 'This finding opens the interesting hypothesis that genes are not the only thing to consider when it comes to determine species longevity,' indicates Maria Blasco, senior author of the paper.

Gene coding error found in rare, inherited gene cof lung-scarring disorder linked to short telomeres
By combing through the entire genetic sequences of a person with a lung scarring disease and 13 of the person's relatives, Johns Hopkins Medicine researchers say they have found a coding error in a single gene that is likely responsible for a rare form of the disease and the abnormally short protective DNA caps on chromosomes long associated with it.

A single change at telomeres controls the ability of cells to generate a complete organism
Pluripotent cells can give rise to all cells of the body, a power that researchers are eager to control because it opens the door to regenerative medicine and organ culture for transplants.

Cold-parenting linked to premature aging, increased disease risk in offspring
New research out of Loma Linda University Health suggests that unsupportive parenting styles may have several negative health implications for children, even into their adult years.

Pitt study finds direct oxidative stress damage shortens telomeres
First causal evidence that oxidative stress works directly on telomeres to speed cellular aging.

Read More: Telomeres News and Telomeres Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to