Researchers find promising therapy to fight epidemic of liver disease

July 08, 2020

AURORA, Colo. (July 8, 2020) - In an effort to combat a growing worldwide epidemic of Nonalcoholic Fatty Liver Disease (NAFLD), scientists have discovered a new target and a new therapy that has shown promising results in preclinical mouse models, according to researchers at the University of Colorado Anschutz Medical Campus.

"NAFLD is a major health issue right now, a real epidemic with no treatment. It affects about 25% of the world population," said the study's lead author Mercedes Rincon, PhD, professor in the Department of Immunology and Microbiology at the University of Colorado School of Medicine. "The incidence is higher in those who are obese, but it is not restricted to them."

The study was published last week in the journal Nature Communications.

NAFLD is characterized by the accumulation of fat in the liver which can lead to fibrosis and eventually Non-Alcoholic Steatohepatitis (NASH), an advanced phase of NAFLD that can cause liver failure and death. It is now the most common form of chronic liver disease with no drugs currently approved to treat it.

The researchers focused on MCJ or Methylation-Controlled J Protein as a target for NASH. This protein lives in the mitochondria, the engine of the cells, where lipids are burned in the liver. MCJ acts as a brake on the metabolic activity of the mitochondria. Patients with NAFLD often have higher MCJ levels in their livers.

But MCJ is not critical for life under normal conditions, so Rincon's team decided to eliminate this metabolic brake in the liver to increase fat burning and minimize the accumulation of lipids and the development of fibrosis. They used siRNA or Small Interfering RNA to silence MCJ in the liver. This is an emerging therapeutic approach that has shown success in treating some liver diseases.

To test if siRNA for MCJ (called siMCJ) could be a potential therapeutic against NAFLD, mice in preclinical studies were fed a high-fat, high fructose diet. After months on the diet, the mice developed fatty liver. Then they were treated regularly with siMCJ or a placebo. The siMCJ group had lower levels of lipids and fibrosis in their livers compared to the control group. Using this treatment, similar reductions in lipid content and fibrosis were seen in another model on a low protein diet.

"We showed that MCJ-deficient mice are resistant to the development of fatty liver and NASH," Rincon said. "Importantly, using siRNA as a therapeutic approach we show that treatment with different formulations of siMCJ after the onset of the disease reduces liver steatosis and fibrosis in multiple mouse models."

A key aspect of this therapy is delivering it to the right part of the liver. The researchers combined the siRNA with GalNac, a sugar derivative that binds directly to hepatocytes, cells that make up the majority of the liver.

The result, the study said, is that MCJ is emerging as an alternative target for treating NASH and NAFLD.

"Currently, most leading therapeutic drugs undergoing clinical trials for NASH are small molecules given as a systemic treatment," Rincon said. "Our data show, in contrast, that the use of siRNA to reduce the levels of MCJ in the liver may constitute an alternative therapeutic strategy."
-end-
About the University of Colorado Anschutz Medical Campus



The University of Colorado Anschutz Medical Campus is a world-class medical destination at the forefront of transformative science, medicine, education, and healthcare. The campus encompasses the University of Colorado health professional schools, more than 60 centers and institutes, and two nationally ranked hospitals that treat more than 2 million adult and pediatric patients each year. Innovative, interconnected and highly collaborative, together we deliver life-changing treatments, patient care, professional training, and conduct world-renowned research powered by more than $500 million in research awards. For more information, visit https://www.cuanschutz.edu

University of Colorado Anschutz Medical Campus

Related Protein Articles from Brightsurf:

The protein dress of a neuron
New method marks proteins and reveals the receptors in which neurons are dressed

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Diets high in protein, particularly plant protein, linked to lower risk of death
Diets high in protein, particularly plant protein, are associated with a lower risk of death from any cause, finds an analysis of the latest evidence published by The BMJ today.

A new understanding of protein movement
A team of UD engineers has uncovered the role of surface diffusion in protein transport, which could aid biopharmaceutical processing.

A new biotinylation enzyme for analyzing protein-protein interactions
Proteins play roles by interacting with various other proteins. Therefore, interaction analysis is an indispensable technique for studying the function of proteins.

Substituting the next-best protein
Children born with Duchenne muscular dystrophy have a mutation in the X-chromosome gene that would normally code for dystrophin, a protein that provides structural integrity to skeletal muscles.

A direct protein-to-protein binding couples cell survival to cell proliferation
The regulators of apoptosis watch over cell replication and the decision to enter the cell cycle.

A protein that controls inflammation
A study by the research team of Prof. Geert van Loo (VIB-UGent Center for Inflammation Research) has unraveled a critical molecular mechanism behind autoimmune and inflammatory diseases such as rheumatoid arthritis, Crohn's disease, and psoriasis.

Resurrecting ancient protein partners reveals origin of protein regulation
After reconstructing the ancient forms of two cellular proteins, scientists discovered the earliest known instance of a complex form of protein regulation.

Sensing protein wellbeing
The folding state of the proteins in live cells often reflect the cell's general health.

Read More: Protein News and Protein Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.