Nav: Home

Biosynthetic sustainable hierarchical solar steam generator

July 08, 2020

Water is vital to the survival of life. However, water scarcity has become a major problem in modern society. Today, one-fifth of the world's population lives in water- deficient areas, especially in areas where there is no electricity. For people in such areas, access to clean drinking water is often a difficult task. Therefore, they urgently need an efficient, low-cost, sustainable, and easily accessible technologies and devices to generate clean water. Solar energy is one of the most abundant and widespread resources on earth. Solar-powered water purification technology is simple and efficient to obtain clean drinking water from non-drinkable water sources such as lake water, sewage or seawater.

Nowadays, a team led by Prof. Shu-Hong Yu from the University of Science and Technology of China (USTC) report an efficient and sustainable biomimetic hierarchical solar steam generator (HSSG) based on bacterial cellulose (BC) nanocomposites. This HSSG is fabricated through a one-step aerosol-assisted biosynthesis process. The designed microbial synthesis process is successfully combined with the deposition of nanomaterials, and a sophisticated biomimetic hierarchical structure is constructed simply and efficiently. The hierarchical structure of this HSSG contains three continuous layers with different functions, including light absorbing layer of carbon nanotubes/BC, thermal insulation layer of glass bubbles /BC and wood substrate for supporting and water transporting. In HSSG, three-dimensional (3D) cellulose nanofiber network of BC hydrogel significantly reduced the energy consumption to convert the liquid water into vapor and accelerate the vaporization of water. Owing to the hierarchical structure design and reduced vaporization enthalpy of nanocomposites of HSSG, a high evaporation rate of 2.9 kg m-2 h-1 and solar-to-vapor efficiency of 80 % can be achieved.

In this HSSG, the hierarchical structure nanocomposites grow on the wood substrate and are tightly combined with the wood substrate through BC network of nanofibers. BC nanofibers crosslink with the cellulose of wood forming infiltrating layer in wood, which acts as a strong binder between wood and BC nanocomposite layers. This structure ensures the fast water transportation from wood to the BC nanocomposite layers and makes them firmly attached to wood substrate, which provides the structural foundation of thermal insulation and water transportation. Glass bubbles are microscale hollow glass spheres, which provides the structural foundation of thermal insulation and water transportation. On the top of the device, the carbon nanotubes and BC nanocomposite layer have sophisticated interlaced structure where carbon nanotubes and cellulose nanofibers form double-network of nanofibers. In this double-network, carbon nanotubes function as highly effective solar light absorber and BC nanofibers are used to transport water and reduce the energy consumption of evaporation. This multilayered structure of wood, glass bubbles /BC and carbon nanotubes/BC is designed to achieve fast water transportation, thermal management, effective light absorption and reduced vaporization energy consumption. Moreover, to systematically investigate the relation between evaporation rate, energy efficiency and energy consumption of evaporation, the team provides a novel two-dimension chart with guide lines showing different enthalpy of vaporization. This theoretical analysis method shows potential for analyzing the contributions of different functional parts in solar steam generator devices for evaporation rate.

Comparing with other technology of solar powered water purification, HSSG have great advantage on evaporation rate, energy efficiency, sustainability and cost, which make it a promising technology for future water purification.

University of Science and Technology of China

Related Carbon Nanotubes Articles:

New production method for carbon nanotubes gets green light
A new method of producing carbon nanotubes -- tiny molecules with incredible physical properties used in touchscreen displays, 5G networks and flexible electronics -- has been given the green light by researchers, meaning work in this crucial field can continue.
Growing carbon nanotubes with the right twist
Researchers synthetize nanotubes with a specific structure expanding previous theories on carbon nanotube growth.
Research shows old newspapers can be used to grow carbon nanotubes
New research has found that old newspaper provide a cheap and green solution for the bulk production of single walled carbon nanotubes.
Clean carbon nanotubes with superb properties
Scientists at Aalto University, Finland, and Nagoya University, Japan, have found a new way to make ultra-clean carbon nanotube transistors with superior semiconducting properties.
Dietary fiber effectively purifies carbon nanotubes
A dietary fiber can help separate out semiconducting carbon nanotubes used for making transistors for flexible electronics.
Why modified carbon nanotubes can help the reproducibility problem
Scientists at Tokyo Institute of Technology (Tokyo Tech) conducted an in-depth study on how carbon nanotubes with oxygen-containing groups can be used to greatly enhance the performance of perovskite solar cells.
Tensile strength of carbon nanotubes depends on their chiral structures
Single-walled carbon nanotubes should theoretically be extremely strong, but it remains unclear why their experimental tensile strengths are lower and vary among nanotubes.
New study reveals carbon nanotubes measurement possible for the first time
Swansea University scientists report an entirely new approach to manipulation of carbon nanotubes that allows physical measurements to be made on carbon nanotubes that have previously only been possible by theoretical computation.
Neural networks will help manufacture carbon nanotubes
A team of scientists from Skoltech's Laboratory of Nanomaterials proposed a neural-network-based method for monitoring the growth of carbon nanotubes, preparing the ground for a new generation of sophisticated electronic devices.
Efficient, interconnected, stable: New carbon nanotubes to grow neurons
Carbon nanotubes able to take on the desired shapes thanks to a special chemical treatment, called crosslinking and, at the same time, able to function as substrata for the growth of nerve cells, finely tuning their growth and activity.
More Carbon Nanotubes News and Carbon Nanotubes Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at