Regulating the properties of MAPbBr3 single crystal via voltage and application

July 08, 2020

Lead halide perovskites can be turned into optoelectronic devices through low-cost solution depositions, but these approaches often leave numerous charge-trapping defects in the perovskite. Continuously improving the performance of these optoelectronic devices is needed to overcome the bottleneck problem. The defect (including surface defects and volume defects) density in perovskites is a key parameter that limits the performance of these materials. To control the surface defects, a widely studied method is to passivate and cure the defects by a surface engineering process, which can be achieved by adding a variety of additives, including ammonium methyl bromide, guanidinium bromide, potassium iodide18, phenethyl iodide, poly(3-hexylthiophene-2,5-diyl), choline iodine, and 1-butyl-3-methylimidazolium tetrafluoroborate. However, this method requires precise control of the amount of the additives, the order of addition, and the reaction time, which makes this process complicated and results in a high risk of loss. To tune the volume defects, a known strategy is irradiating perovskite with high-energy ultraviolet light, sunlight, near-infrared light, etc. This strategy requires a long repair time and sometimes results in irreversible damage to the materials, which makes the process complicated. Therefore, highly efficient and convenient pathways to regulate defects in perovskites are still needed.

In a new paper published in Light Science & Application, the team of scientists, led by Associate Professor Weili Yu, Professor Chunlei Guo from the Photonics Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences and Professor Qingfeng Dong from State Key Laboratory of Supramolecular Structure and Materials, Jilin University have jointly developed a technique (voltage regulation engineering) for modifying the defect population of perovskite crystals without requiring chemical additives.

The team used probes to apply an electric field to the surface of a perovskite sample for helping move injected charges into defect sites with a high degree of control, as well as the optical and electrical properties of perovskite sample. Futhermore, the optimized defect populations enabled the perovskite to act as memristor device, capable of activating multiple resistance states.

These scientists summarize the operational principle of the voltage regulation engineering: "The voltage regulation engineering as an efficient strategy can regulate the defects in perovskites and influence its dynamic carrier transport. The injected charges act as a Lewis base can be trapped by lead defects in the surface layer and further passivate the deep-level donor-like defects inside the perovskites. Thus, these "cured" defects no longer trap carriers, and the probability of radiation recombination in perovskites is enhanced, which further improve its optical and electrical properties."

"This work provides novel insight into the flexibility of the defect density of perovskites, and voltage regulation is an effective engineering method to tune not only the defect density but also the carrier lifetime, PL intensity and resistance. This work will improve the optimization of optoelectronic devices based on perovskites single crystals." they added and forecast.
-end-


Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, Chinese Academy

Related Electric Field Articles from Brightsurf:

Charging electric cars up to 90% in 6 minutes
POSTECH Professor Byoungwoo Kang's research team uncovers a new Li-ion battery electrode material that can achieve high-energy density and high power capability per volume without reducing particle size.

uOttawa researchers find cheaper, faster way to measure the electric field of light
Researchers at the University of Ottawa have created a new method to measure the temporal evolution of electric fields with optical frequencies.

How dangerous are burning electric cars?
What happens if an electric car burns in a road tunnel or an underground car park?

One more hit from rare Earth: Efficient coherent spin manipulation by the electric field
Researchers used rare earth ions to efficiently couple the electric and magnetic behaviors of material.

Battery breakthrough gives boost to electric flight and long-range electric cars
Researchers at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab), in collaboration with Carnegie Mellon University, have developed a new battery material that could enable long-range electric vehicles that can drive for hundreds of miles on a single charge, and electric planes called eVTOLs for fast, environmentally friendly commutes.

Deterministic reversal of single magnetic vortex circulation by an electric field
Chinese researchers discover a deterministic reversal of magnetic vortex circulation in a Ni79Fe21 (NiFe) island on top of a layered-perovskite Bi2WO6 (BWO) thin film using an electric field.

4D electric circuit network with topology
Researchers from China and Germany have proposed a design scheme to implement a four-dimensional topological insulating state in circuit network, which provides a convenient physical platform for studying high-dimensional states.

How we might recharge an electric car as it drives
Stanford engineers demonstrate a technology that could one day be scaled up to power a car moving down the road.

Electric cars better for climate in 95% of the world
Fears that electric cars could actually increase carbon emissions are unfounded in almost all parts of the world, news research shows.

O-FIB: Far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment
Nanoscale texturing, drilling, cutting and spatial sculpturing require not only high accuracy, but also the capability of manufacturing in the atmospheric environment.

Read More: Electric Field News and Electric Field Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.