Researchers uncover a critical early step of the visual process

July 08, 2020

The key components of electrical connections between light receptors in the eye and the impact of these connections on the early steps of visual signal processing have been identified for the first time, according to research published today in Science Advances by The University of Texas Health Science Center at Houston (UTHealth).

To understand fully how the light receptors, called photoreceptors, impact the early stages of the process of vision, researchers have traditionally focused their attention on how two key sensory cells - rods and cones - convert elementary particles of light into electrical signals and how these signals are relayed to the brain through devoted circuits. Rods are used for night vision and cones are used for daytime and color vision. While it has been known for some time that electrical signals can spread between photoreceptors through cell connectors called gap junctions, the nature and function have remained poorly understood.

"This research will lead to a better understanding of how the retina processes signals from the rods and the cones in the eyes, in particular under ambient lighting conditions when both photoreceptor types are active, such as at dawn and dusk. This knowledge is currently missing and may have to be taken into consideration when designing photoreceptor or retinal implants to restore vision," said Christophe P. Ribelayga, PhD, co-lead author of the study and associate professor and Bernice Weingarten Chair in the Ruiz Department of Ophthalmology & Visual Science at McGovern Medical School at UTHealth.

Co-lead author Steve Massey, PhD, is professor, Elizabeth Morford Chair, and research director in the Ruiz Department of Ophthalmology & Visual Science at McGovern Medical School at UTHealth.

The coupling - or communication - between rods and cones in the retina is critical for understanding how the visual signaling process works.

What the researchers discovered, to their surprise, is that rods do not directly communicate with other rods and cones seldom communicate directly with other cones. Instead, the majority of signaling happens through communication between rods and cones. Researchers identified a specific protein called connexin36 (Cx36) as the main component of rod/cone gap junctions.

"We noted that every single rod has electrical access to a cone and that cone/cone gap junctions are very rare," Massey said. "We estimated that more than 95% of all gap junctions between photoreceptors are rod/cone gap junctions; they have the largest volume and the largest conductance. So, rod/cone gap junctions dominate the network of photoreceptors both in size and number."

To help researchers better understand how the photoreceptor network is organized, they developed genetic mouse strains for the work that were bred to eliminate gap junctions in either rods or cones.

"Our study has important implications," said Ribelayga. "Our data position rod/cone gap junctions as the keystone of the photoreceptor network. The rod/cone gap junction is the entry of a rod pathway through which signals of rod origin can travel across the retina. We have thus generated mice that are essentially deficient for the entry of this pathway. In future experiments, we will use these animals to determine the functional importance of the rod/cone pathway in the retinal processing of rod signals and for vision."

In 2018, researchers in the Ruiz Department of Ophthalmology & Visual Science received more than $4 million in grants from the National Institutes of Health's National Eye Institute to study photoreceptor development, function, and electrical interactions. Ribelayga and Massey led the effort to lay out the architecture of the network of electrically coupled receptors, a critical step toward a better understanding of how photoreceptors encode light signals and how the retina processes these signals.
-end-
Additional UTHealth authors include Nange Jin, PhD; Zhijing Zhang, PhD; Joyce Keung, PhD; Munenori Ishibashi, PhD; Lian-Ming Tian; Iris Fahrenfort, PhD; Takae Kiyama, PhD; Chai-An Mao, PhD; David W. Marshak, PhD; Jiaqian Wu, PhD; Haichao Wei, PhD; and Yanan You, PhD. Marshak is with McGovern Medical School's Department of Neurobiology and Anatomy; and Wu, Wei, and You are with the UTHealth Center for Stem Cell and Regenerative Medicine at the Brown Foundation Institute of Molecular Medicine.

Other authors include Sean B. Youn with Rice University; Eduardo Solessio, PhD; and Yumiko Umino, PhD, with the Center for Vision Research and SUNY Eye Institute at SUNY Upstate Medical University; and Friso Postma, PhD; and David L. Paul, PhD, with Harvard University.

University of Texas Health Science Center at Houston

Related Photoreceptors Articles from Brightsurf:

Research provides a new understanding of how a model insect species sees color
Through an effort to characterize the color receptors in the eyes of the fruit fly Drosophila melanogaster, University of Minnesota researchers discovered the spectrum of light it can see deviates significantly from what was previously recorded.

Scientists use gene therapy and a novel light-sensing protein to restore vision in mice
A newly developed light-sensing protein called the MCO1 opsin restores vision in blind mice when attached to retina bipolar cells using gene therapy.

Seeing the eye like never before
In a big step for ophthalmology, scientists created a method to view the inner workings of the eye and its diseases at the cellular level.

Artificial intelligence recognizes deteriorating photoreceptors
A software based on artificial intelligence (AI), which was developed by researchers at the Eye Clinic of the University Hospital Bonn, Stanford University and University of Utah, enables the precise assessment of the progression of geographic atrophy (GA), a disease of the light sensitive retina caused by age-related macular degeneration (AMD).

Researchers develop cell injection technique that could help reverse vision loss
University of Toronto Engineering researchers have developed a new method of injecting healthy cells into damaged eyes.

Not just light: The sensitivity of photoreceptors to mechanical stimuli is unveiled
''We thought we knew almost everything about photoreceptors, but we have proved that is not the case''.

Researchers uncover a critical early step of the visual process
The key components of electrical connections between light receptors in the eye and the impact of these connections on the early steps of visual signal processing have been identified for the first time, according to research published today in Science Advances by The University of Texas Health Science Center at Houston (UTHealth).

Nanotechnology applied to medicine: The first liquid retina prosthesis
Researchers at Istituto Italiano di Tecnologia has led to the development of an artificial liquid retinal prosthesis to counteract the effects of diseases such as retinitis pigmentosa and age-related macular degeneration that cause the progressive degeneration of photoreceptors of the retina, resulting in blindness.

Restoring vision by gene therapy
Latest scientific findings give hope for people with incurable retinal degeneration.

'Single pixel' vision in fish helps scientists understand how humans can spot tiny details
Recently discovered 'single-pixel vision' in fish could help researchers understand how humans are able to spot tiny details in their environment -- like stars in the sky.

Read More: Photoreceptors News and Photoreceptors Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.