Blood-based biomarker can detect, predict severity of traumatic brain injury

July 08, 2020

A study from the National Institutes of Health confirms that neurofilament light chain as a blood biomarker can detect brain injury and predict recovery in multiple groups, including professional hockey players with acute or chronic concussions and clinic-based patients with mild, moderate, or severe traumatic brain injury. The research was conducted by scientists at the NIH Clinical Center, Bethesda, Maryland, and published in the July 8, 2020, online issue of Neurology.

After a traumatic brain injury, neurofilament light chain breaks away from neurons in the brain and collects in the cerebrospinal fluid (CSF). The scientists confirmed that neurofilament light chain also collects in the blood in levels that correlate closely with the levels in the CSF. They demonstrated that neurofilament light chain in the blood can detect brain injury and predict recovery across all stages of traumatic brain injury.

"Currently, there are no validated blood-based biomarkers to provide an objective diagnosis of mild traumatic brain injury or to predict recovery," said Leighton Chan, M.D., M.P.H., chief of the Rehabilitation Medicine Department at the NIH Clinical Center. "Our study reinforces the need and a way forward for a non-invasive test of neurofilament light chain to aid in the diagnosis of patients and athletes whose brain injuries are often unrecognized, undiagnosed or underreported. "

The study examined multiple groups including professional hockey players in Sweden with sports-related concussions, hockey players without concussions, hockey players with persistent post-concussion symptoms, non-athlete controls, and clinic-based patients at the NIH Clinical Center who were healthy or with acute, subacute, and chronic mild traumatic brain injuries. The study showed that neurofilament light chain in the blood:In the clinic-based patients, the levels of blood neurofilament light chain at five years after a single mild, moderate, or severe traumatic brain injury were significantly increased compared to healthy controls. This suggests that even a single mild traumatic brain injury (without visible signs of structural damage on a standard clinical MRI) may cause long-term brain injury, and serum neurofilament light could be a sensitive biomarker to detect even that far out from initial injury.

"This study is the first to do a detailed assessment of serum neurofilament light chain and advanced brain imaging in multiple cohorts, brain injury severities, and time points after injury," said the study's lead author, Pashtun Shahim, M.D., Ph.D., NIH Clinical Center. "Our results suggest that serum neurofilament light chain may provide a valuable compliment to imaging by detecting underlying neuronal damage which may be responsible for the long-term symptoms experienced by a significant number of athletes with acute concussions, and patients with more severe brain injuries."

The study was funded by the Intramural Research Program at NIH, the Department of Defense Center for Neuroscience and Regenerative Medicine at the Uniformed Services University, and the Swedish Research Council.

Traumatic brain injury is a major leading cause of death and disability in the United States with more than 2.87 million emergency department visits, hospitalizations and deaths annually. While majority of all traumatic brain injuries are classified as mild (also known as a concussion), it remains difficult to diagnose this condition. There are a wide range of variable behavioral and observational tests to help determine a patient's injuries but most of these tests rely on the patient to self-report signs and symptoms. Also, imaging has limitations with detecting micro-structural injuries in the brain.
-end-
About the NIH Clinical Center: The NIH Clinical Center is the world's largest hospital entirely devoted to clinical research. It is a national resource that makes it possible to rapidly translate scientific observations and laboratory discoveries into new approaches for diagnosing, treating, and preventing disease. Over 1,600 clinical research studies are conducted at the NIH Clinical Center, including those focused on cancer, infectious diseases, blood disorders, heart disease, lung disease, alcoholism and drug abuse. For more information about the Clinical Center, visit https://clinicalcenter.nih.gov/index.html.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

NIH...Turning Discovery Into Health®

NIH/Clinical Center

Related Traumatic Brain Injury Articles from Brightsurf:

Point-of-care biomarker assay for traumatic brain injury
Intracranial abnormalities on CT scan in patients with traumatic brain injury (TBI) can be predicted by glial fibrillary acidic protein (GFAP) levels in the blood.

Long-studied protein could be a measure of traumatic brain injury
WRAIR scientists have recently demonstrated that cathepsin B, a well-studied protein important to brain development and function, can be used as biomarker, or indicator of severity, for TBI.

Reducing dangerous swelling in traumatic brain injury
After a traumatic brain injury (TBI), the most harmful damage is caused by secondary swelling of the brain compressed inside the skull.

Blue light can help heal mild traumatic brain injury
Daily exposure to blue wavelength light each morning helps to re-entrain the circadian rhythm so that people get better, more regular sleep which was translated into improvements in cognitive function, reduced daytime sleepiness and actual brain repair.

Dealing a therapeutic counterblow to traumatic brain injury
A team of NJIT biomedical engineers are developing a therapy which shows early indications it can protect neurons and stimulate the regrowth of blood vessels in damaged tissue.

Predictors of cognitive recovery following mild to severe traumatic brain injury
Researchers have shown that higher intelligence and younger age are predictors of greater cognitive recovery 2-5 years post-mild to severe traumatic brain injury (TBI).

Which car crashes cause traumatic brain injury?
Motor vehicle crashes are one of the most common causes of TBI-related emergency room visits, hospitalizations and deaths.

Traumatic brain injury and kids: New treatment guidelines issued
To help promote the highest standards of care, and improve the overall rates of survival and recovery following TBI, a panel of pediatric critical care, neurosurgery and other pediatric experts today issued the third edition of the Brain Trauma Foundation Guidelines for the Management of Pediatric Severe TBI.

Addressing sleep disorders after traumatic brain injury
Amsterdam, NL, December 10, 2018 - Disorders of sleep are some of the most common problems experienced by patients after traumatic brain injury (TBI).

Rutgers researchers discover possible cause for Alzheimer's and traumatic brain injury
Rutgers researchers discover a possible cause for Alzheimer's and traumatic brain injury, and the new mechanism may have also led to the discovery of an effective treatment.

Read More: Traumatic Brain Injury News and Traumatic Brain Injury Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.