Nav: Home

NASA X-Ray Observatory Completes Tests Under Harsh Simulated Space Conditions

July 08, 1998

NASA's most powerful X-ray observatory has successfully completed a month-long series of tests in the extreme heat, cold, and airless conditions it will encounter in space during its five-year mission to shed new light on some of the darkest mysteries of the universe.

The Advanced X-ray Astrophysics Facility was put through the rigorous testing as it was alternately heated and cooled in a special vacuum chamber at TRW Space and Electronics Group in Redondo Beach, Calif., NASA's prime contractor for the observatory.

"Successful completion of thermal vacuum testing marks a significant step in readying the observatory for launch aboard the Space Shuttle in January," said Fred Wojtalik, manager of the Observatory Projects Office at NASA's Marshall Space Flight Center in Huntsville, Ala.

"The observatory is a complex, highly sophisticated, precision instrument," explained Wojtalik. "We are pleased with the outcome of the testing, and are very proud of the tremendous team of NASA and contractor technicians, engineers and scientists that came together and worked hard to meet this challenging task."

Testing began in May after the observatory was raised into the 60-foot thermal vacuum chamber at TRW. Testing was completed on June 20.

During the tests the Advanced X-ray Astrophysics Facility was exposed to 232 degree heat and 195 degree below zero Fahrenheit cold. During four temperature cycles, all elements of the observatory -- the spacecraft, telescope, and science instruments -- were checked out.

Computer commands directing the observatory to perform certain functions were sent from test consoles at TRW to all Advanced X-ray Astrophysics Facility components. A team of contractor and NASA engineers and scientists monitored and evaluated the results.

Commands were also sent from, and test data monitored at, the Advanced X-ray Astrophysics Facility Operations Control Center in Cambridge, Mass., as part of the test series. The observatory will be managed and controlled from the Operations Control Center after launch.

"As is usually the case, we identified a few issues to be resolved before launch," said Wojtalik. "Overall, however, the observatory performed exceptionally well."

The observatory test team discovered a mechanical problem with one of the primary science instruments, the Imaging Spectrometer. A door protecting the instrument did not function when commanded by test controllers.

"We do these tests to check and double check every aspect of satellite operation that could affect the ultimate success of the science mission," said Craig Staresinich, TRW Advanced X-ray Astrophysics Facility program manager. "Discovering a problem now is a success. Discovering a problem later, after launch, would be a failure."

A team of NASA and contractor engineers are studying the mechanical problem and developing a plan to correct it. The instrument will be sent back to its builder, Lockheed-Martin Astronautics in Denver, Colo., where it will be repaired while the rest of the observatory continues other testing. This should still allow an on-time delivery of the observatory to NASA's Kennedy Space Center, Fla., in August, where it will be readied for launch in January.

With a resolving power 10 times greater than previous X-ray telescopes, the new X-ray observatory will provide scientists with views of previously invisible X-ray sources, including black holes, exploding stars and interstellar gasses. The third of NASA's Great Observatories, it will join the Compton Gamma Ray Observatory and the Hubble Space Telescope in orbit.

The Advanced X-ray Astrophysics Facility program is managed by the Marshall Center for the Office of Space Science, NASA Headquarters, Washington, D.C. TRW Space & Electronics Group is assembling the observatory and doing verification testing. The Advanced X-ray Astrophysics Facility Operations Control Center is operated by the Smithsonian Astrophysical Observatory. Using glass purchased from Schott Glaswerke, Mainz, Germany, the telescope's mirrors were built by Raytheon Optical Systems Inc., Danbury, Conn. The mirrors were coated by Optical Coating Laboratory, Inc., Santa Rosa, Calif., and assembled by Eastman Kodak Co., Rochester, N.Y.

The Advanced X-ray Astrophysics Facility Charge-Coupled Device Imaging Spectrometer was developed by Pennsylvania State University, University Park, Pa., and the Massachusetts Institute of Technology (MIT), Cambridge. One diffraction grating was developed by MIT, the other by the Space Research Organization Netherlands, Utrecht, Netherlands, in collaboration with the Max Planck Institute, Garching, Germany. The High Resolution Camera was built by the Smithsonian Astrophysical Observatory. Ball Aerospace & Technologies Corporation of Boulder, Colo., developed the aspect camera and the Science Instrument Module.

Note to editors: Digital images to accompany this release are available at the following URL:

NASA/Marshall Space Flight Center News Center

Related Imaging Spectrometer Articles:

Major new issue of CVIA on imaging
Cardiovascular Innovations and Applications (CVIA) journal has just published a special issue on Noninvasive Cardiac Imaging with Guest Editor Dr.
Imaging at the speed of light
Over the past few years, Chunlei Guo and his research team at the University of Rochester have used lasers to manipulate the properties of target materials and make them, for instance, superhydrophilic or superhydrophobic.
NASA and MIT Collaborate to develop space-based quantum-dot spectrometer
A NASA technologist has teamed with the inventor of a new nanotechnology that could transform the way space scientists build spectrometers, the all-important device used by virtually all scientific disciplines to measure the properties of light emanating from astronomical objects, including Earth itself.
High-res biomolecule imaging
Tiny defects in diamonds known as nitrogen vacancy defects could lead to high-resolution images of the structure of biological molecules, according to a new study by MIT researchers.
Meta-lenses bring benchtop performance to small, hand-held spectrometer
A research team of physicists from Harvard University has developed new hand-held spectrometers capable of the same performance as large, benchtop instruments.
ASU spectrometer to fly on new NASA mission to distant 'Trojan' asteroids
In 2021, NASA will launch a mission to a group of asteroids that accompany the giant planet Jupiter.
Live cell imaging using a smartphone
A recent study from Uppsala University shows how smartphones can be used to make movies of living cells, without the need for expensive equipment.
Imaging stroke risk in 4-D
A new MRI technique developed at Northwestern University detects blood flow velocity to identify who is most at risk for stroke, so they can be treated accordingly.
Enhancing molecular imaging with light
A new technology platform from Northwestern University is able to image molecules at the nanoscale with super-resolution.
A new method for prostate cancer imaging
In this issue of JCI Insight, researchers at the University of British Columbia describe a new imaging tool to detect the presence of the androgen receptor and its active splice variants.

Related Imaging Spectrometer Reading:

Introduction to Imaging Spectrometers (Tutorial Texts in Optical Engineering)
by William L. Wolfe (Author)

Providing an introduction to imaging spectrometers, this text first reviews the required background information in optics, radiometry, imaging, spectral sensing and focal plane arrays, then goes on to discuss the principles of these subjects and apply them to specific problems. View Details

Optical Payloads for Space Missions
by Shen-En Qian (Editor)

Optical Payloads for Space Missions is a comprehensive collection of optical spacecraft payloads with contributions by leading international rocket-scientists and instrument builders.

Covers various applications, including earth observation, communications, navigation, weather, and science satellites and deep space exploration Each chapter covers one or more specific optical payload Contains a review chapter which provides readers with an overview on the background, current status, trends, and future prospects of the optical payloads Provides information on the principles of... View Details

Laser Spectroscopy 1: Basic Principles
by Wolfgang Demtröder (Author)

Keeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, e.g., ultrafast lasers (atto- and femtosecond lasers) and parametric oscillators, coherent matter waves, Doppler-free Fourier spectroscopy with optical frequency combs, interference spectroscopy, quantum optics, the interferometric detection of gravitational waves and still more applications in chemical analysis,... View Details

Terahertz Astronomy
by Christopher K. Walker (Author)

A Powerful Window into Cosmic Evolution

Terahertz (THz) observations of interstellar atoms, molecules, and dust serve as powerful probes of the conditions within the interstellar medium that permeates our galaxy, providing insights into the origins of stars, planets, galaxies, and the Universe. Taking a cross-disciplinary approach to the subject, Terahertz Astronomy explores THz astrophysics and the technologies that make this rapidly evolving field possible.

The first four chapters of the book discuss the origin and interpretation of... View Details

Imaging Mass Spectrometry: Protocols for Mass Microscopy
by Mitsutoshi Setou (Editor)

Addressing the widespread need for a practical guide to imaging mass spectrometry (IMS), this book presents the protocols of IMS technology. As that technology expands, research groups around the world continue its development. Pharmaceutical companies are using IMS for drug analyses to study pharmacokinetics and medical properties of drugs. Drug research and disease-related biomarker screening are experiencing greater use of this technology, with a concurrent increase in the number of researchers in academia and industry interested in wider applications of IMS. Intended for beginners or... View Details

HIRIS, High-Resolution Imaging Spectrometer : science opportunities for the 1990s : instrument panel report
by Anonymous (Author)

View Details

MODIS : moderate-resolution imaging spectrometer instrument panel report
by Anonymous (Author)

View Details

Snapshot imaging spectropolarimetry: Combining the computed tomographic imaging spectrometer with channeled spectropolarimetry
by Nathan Hagen (Author)

Integrating a channeled spectropolarimeter with a computed tomographic imaging spectrometer (CTIS) allows the creation of a snapshot imaging spectropolarimeter, capturing the complete spatially and spectrally-resolved Stokes vectors of a scene in a single data frame. The main body of the research contained here is focused on finding ways to improve the CTIS measurement technique. The first effort is a reworking of the instrument's calibration procedure, followed by a survey and comparison of ideas for alternative CTIS designs. The second effort develops a new approach to CTIS reconstruction... View Details

Imaging Spectrometry IX (Proceedings of SPIE)
by Sylvia S. Shen (Editor), Paul E. Lewis (Editor)

Proceedings of SPIE present the original research papers presented at SPIE conferences and other high-quality conferences in the broad-ranging fields of optics and photonics. These books provide prompt access to the latest innovations in research and technology in their respective fields. Proceedings of SPIE are among the most cited references in patent literature. View Details

3438: Imaging Spectrometry IV (Proceedings / SPIE--the International Society for Optical Engineering)
by Oswald H. W. Siegmund (Editor)

View Details

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Peering Deeper Into Space
The past few years have ushered in an explosion of new discoveries about our universe. This hour, TED speakers explore the implications of these advances — and the lingering mysteries of the cosmos. Guests include theoretical physicist Allan Adams, planetary scientist Sara Seager, and astrophysicists Natasha Hurley-Walker and Jedidah Isler.
Now Playing: Science for the People

#461 Adhesives
This week we're discussing glue from two very different times. We speak with Dr. Jianyu Li about his research into a new type of medical adhesive. And Dr. Geeske Langejans explains her work making and investigating Stone Age and Paleolithic glues.