Scientists follow familiar TRAIL to new cancer therapy

July 09, 2007

A new study identifies a combination therapy that may sensitize human cancer cells to a promising treatment currently being used in clinical trials. The research, published in the July issue of the journal Cancer Cell, published by Cell Press, provides a pharmacological method for enhancing the potency and effectiveness of a tumor necrosis factor (TNF) death receptor ligand against a variety of human cancers.

Potency and lack of toxicity to normal tissues make activation of TNF-a-related apoptosis-inducing ligand (TRAIL) death receptor signaling an attractive and exciting target for cancer therapy, and it is currently being tested in clinical trials. However, most cancer cells have defects in their ability to die via a cell death pathway called apoptosis, and unfortunately, TRAIL therapy is not effective in cells that have certain defects in apoptotic pathways. Dr. Wafik S. El-Deiry from the University of Pennsylvania School of Medicine and colleagues designed a series of studies to gain a better understanding of TRAIL-associated cell signaling pathways in cancer cells and to look for ways to pharmacologically optimize TRAIL therapy.

Dr. El-Deiry's group had previously established that c-Myc is a key mediator of TRAIL-induced apoptosis and that cancer cells lacking c-Myc and a functional apoptotic pathway were resistant to TRAIL. In the current study, the researchers demonstrated that expression of c-Myc in TRAIL-resistant human colon cancer cells sensitized the cells to TRAIL, even when the cells had intrinsic apoptotic defects. The researchers observed that TRAIL induced expression of two potent antiapoptotic molecules, Mcl-1 and cIAP2, and that c-Myc repressed both molecules.

The researchers also discovered that the multikinase inhibitor sorafenib prevented TRAIL-mediated induction of Mcl-1 and cIAP2, and although it had little effect on the killing of TRAIL-resistant cells when administered alone, combination with TRAIL caused significant death of previously TRAIL-resistant cancer cells in culture and TRAIL-resistant tumors in mouse models. Sorafenib was recently approved by the FDA for treatment of renal cancer and is currently undergoing investigation in over 30 clinical trials for use against a wide range of human cancers, including melanoma, prostate, ovarian, pancreatic, lung cancers, and others.

Like c-Myc, sorafenib appears to work through a mechanism that involves repression of TRAIL-induced expression of Mcl-1 and cIAP2. "These results also establish the clinical potential for combining TRAIL or other death receptor agonists with an orally bioavailable, low-toxicity multikinase inhibitor, sorafenib/Nexavar, thus providing an exciting approach for attacking cancers that harbor defective intrinsic apoptotic machinery," explains Dr. El-Deiry.
-end-
The Researchers include M. Stacey Ricci, Seok-Hyun Kim, Kazuhiro Ogi, and John P. Plastaras, University of Pennsylvania School of Medicine in Philadelphia; Jianhua Ling, The University of Texas M.D. Anderson Cancer Center in Houston; Wenge Wang, Zhaoyu Jin, Yingqiu Y. Liu, David T. Dicker, University of Pennsylvania School of Medicine in Philadelphia; Paul J. Chiao, The University of Texas M.D. Anderson Cancer Center in Houston; Keith T. Flaherty, University of Pennsylvania School of Medicine in Philadelphia; Charles D. Smith, Department of Pharmacology, Pennsylvania State University in Hershey; Wafik S. El-Deiry, University of Pennsylvania School of Medicine in Philadelphia. This work was supported in part by NIH grants CA75138, CA98101, CA97100, CA105008, and the Littlefield-AACR award for research on metastatic colon cancer (W.S.E.-D.).

Ricci et al.: "Reduction of TRAIL-Induced Mcl-1 and CIAP2 by c-Myc or Sorafenib Sensitizes Resistant Human Cancer Cells to TRAIL-Induced Death." Publishing in Cancer Cell 12, 66-80, July 2007 DOI 10.1016/j.ccr.2007.05.006 http://www.cancercell.org

Cell Press

Related Cancer Cells Articles from Brightsurf:

Cancer researchers train white blood cells to attacks tumor cells
Scientists at the National Center for Tumor Diseases Dresden (NCT/UCC) and Dresden University Medicine, together with an international team of researchers, were able to demonstrate that certain white blood cells, so-called neutrophil granulocytes, can potentially - after completing a special training program -- be utilized for the treatment of tumors.

New way to target some rapidly dividing cancer cells, leaving healthy cells unharmed
Scientists at Johns Hopkins Medicine and the University of Oxford say they have found a new way to kill some multiplying human breast cancer cells by selectively attacking the core of their cell division machinery.

Breast cancer cells use message-carrying vesicles to send oncogenic stimuli to normal cells
According to a Wistar study, breast cancer cells starved for oxygen send out messages that induce oncogenic changes in surrounding normal epithelial cells.

Breast cancer cells turn killer immune cells into allies
Researchers at Johns Hopkins University School of Medicine have discovered that breast cancer cells can alter the function of immune cells known as Natural killer (NK) cells so that instead of killing the cancer cells, they facilitate their spread to other parts of the body.

Breast cancer cells can reprogram immune cells to assist in metastasis
Johns Hopkins Kimmel Cancer Center investigators report they have uncovered a new mechanism by which invasive breast cancer cells evade the immune system to metastasize, or spread, to other areas of the body.

Engineered immune cells recognize, attack human and mouse solid-tumor cancer cells
CAR-T therapy has been used successfully in patients with blood cancers such as lymphoma and leukemia.

Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.

Engineered bone marrow cells slow growth of prostate and pancreatic cancer cells
In experiments with mice, researchers at the Johns Hopkins Kimmel Cancer Center say they have slowed the growth of transplanted human prostate and pancreatic cancer cells by introducing bone marrow cells with a specific gene deletion to induce a novel immune response.

First phase i clinical trial of CRISPR-edited cells for cancer shows cells safe and durable
Following the first US test of CRISPR gene editing in patients with advanced cancer, researchers report these patients experienced no negative side effects and that the engineered T cells persisted in their bodies -- for months.

Zika virus' key into brain cells ID'd, leveraged to block infection and kill cancer cells
Two different UC San Diego research teams identified the same molecule -- αvβ5 integrin -- as Zika virus' key to brain cell entry.

Read More: Cancer Cells News and Cancer Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.