Nav: Home

Blood flow in the heart revealed in a flash

July 09, 2018

Researchers at Linköping University have for the first time been able to use information from computer tomography images to simulate the heart function of an individual patient. Some of the modelling methods they use have been developed in the motor industry.

Computer tomography systems, also known as CT scanners, are found in most Swedish hospitals. They can be used for a simple investigation to rapidly determine whether a patient has cardiovascular disease - problems with calcification of the blood vessels that supply the heart with oxygen. The investigation is quick, and the patient can go home immediately after.

"The next step, if it is suspected that something is wrong, is a significantly longer and more complicated investigation, where the patient must spend the night in hospital. We have developed a method where we instead use all of the information that we already have from the first investigation. Our method may have major clinical significance," says Anders Persson, professor in medical imaging and director of the Center for Medical Image Science and Visualization (CMIV).

One person who has played a key role is Jonas Lantz, researcher at the Division of Cardiovascular Medicine and CMIV. He presented his doctoral degree in applied thermodynamics and fluid mechanics at LiU. He has imposing knowledge of the methods used to simulate flowing fluids and turbulence in the aeronautical and motor industries, and their application for flow through human blood vessels. He has used these modelling methods to simulate the blood flow in a patient's heart, with the aid of the high-resolution images that are produced from the CT scanner. He has used the huge computing power available from the supercomputers at the National Supercomputer Centre (NSC) at LiU.

"This is the first time we have shown that we can simulate the function of the heart in a particular patient. In the future, we won't need to use supercomputers: the calculations can be done at the CT scanner," says Matts Karlsson, director of NSC and professor in applied thermodynamics and fluid mechanics.

In order to be certain that the images, which - it must be remembered - are calculated in a computer, agree accurately with reality, the researchers asked a dozen patients whether they were willing to remain for a short time after the CT investigation and undergo a further investigation using magnetic resonance imaging.

"Most of them agreed to the further investigation, and this means that we have been able to compare the calculated images with reality. The images are nearly identical," says Anders Persson.

Even though only twelve patients took part in the study, the results are so remarkable that an article is being published in the most prestigious scientific journal in the field, Radiology.

Tino Ebbers, professor of cardiovascular medicine, is convinced that the technology will be useful.

"Magnetic resonance cameras are effective, but they are not available everywhere. The investigation is expensive, patients should not have any metal like pacemakers in their body, and the investigation takes quite some time. Since CT scanning is quick and easy, we can reach completely new patient groups. We can now simulate how the heart is functioning in individual patients," he says.

"We can study the motion of the heart muscle, its physiological condition and its function, while the patient is comfortable at home," Anders Persson emphasises.

It is no coincidence that LiU researchers present results that require deep knowledge within not only flow patterns and turbulence but also medicine and image processing, using methods that require supercomputers.

"This is a good example of how we manage the infrastructure we have at LiU, with magnetic resonance cameras, computer tomographs and supercomputers. We don't sit in our own isolated rooms: it's easy to carry out cross-disciplinary research at LiU. However, at the same time it does need people with a foot in both camps, such as Jonas Lantz, since our methods have been taken from medical research, image processing and applied fluid mechanics," says Matts Karlsson.
-end-
The article: Intracardiac Flow at 4D CT: Comparison with 4D Flow MRI, Jonas Lantz, Vikas Gupta, Lilian Henriksson, Matts Karlsson, Anders Persson, Carl-Johan Carlhäll, Tino Ebbers, Linköpings University, 2018 https://doi.org/10.1148/radiol.2018173017

Contact:
Tino Ebbers, Professor, tino.ebbers@liu.se +46 73 270 77 28
Jonas Lantz, Research Fellow, jonas.lantz@liu.se +46 70 584 40 72.
Anders Persson, Professor, anders.s.persson@liu.se +46 10 103 89 06
Matts Karlsson, Professor, matts.karlsson@liu.se +46 13 28 11 99

Linköping University

Related Blood Vessels Articles:

Study: Use of prefabricated blood vessels may revolutionize root canals
Researchers at OHSU in Portland, Oregon, have developed a process by which they can engineer new blood vessels in teeth, creating better long-term outcomes for root canal patients and clinicians.
New findings on formation and malformation of blood vessels
In diseases like cancer, diabetes, rheumatism and stroke, a disorder develops in the blood vessels that exacerbates the condition and obstructs treatment.
Targeting blood vessels to improve cancer immunotherapy
EPFL scientists have improved the efficacy of cancer immunotherapy by blocking two proteins that regulate the growth of tumor blood vessels.
Reprogrammed blood vessels promote cancer spread
Tumor cells use the bloodstream to spread in the body.
Neurons modulate the growth of blood vessels
A team of researchers at Karlsruhe Institute of Technology shake at the foundations of a dogma of cell biology.
Sensor for blood flow discovered in blood vessels
The PIEZO1 cation channel translates mechanical stimulus into a molecular response to control the diameter of blood vessels.
Blood vessels control brain growth
Blood vessels play a vital role in stem cell reproduction, enabling the brain to grow and develop in the womb, reveals new UCL research in mice.
No blood vessels without cloche
After 20 years of searching, scientists discover the mystic gene controlling vessel and blood cell growth in the embryo.
New way of growing blood vessels could boost regenerative medicine
Growing tissues and organs in the lab for transplantation into patients could become easier after scientists discovered an effective way to produce three-dimensional networks of blood vessels, vital for tissue survival yet a current stumbling block in regenerative medicine.
Regenerating blood vessels gets $2.7 million grant
Biomedical engineers in the Cockrell School of Engineering at The University of Texas at Austin have received $2.7 million in funding to advance a treatment that regenerates blood vessels.

Related Blood Vessels Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...