Nav: Home

Protein function repairing genetic damage in spermatogenesis identified

July 09, 2018

Researchers from the Department of Cell Biology, Physiology and Immunology and the Institute for Biotechnology and Biomedicine of the Universitat Autònoma de Barcelona (IBB-UAB) have unmasked the functioning of a protein involved in DNA repair, ATR, in the meiotic recombination process which takes place during the development of spermatocytes - sperm precursor cells- and how inhibiting this protein causes anomalies which block spermatogenesis.

The study, led by Ignasi Roig and conducted using mouse models, was recently published in Nature Communications. Also collaborating in the study were researchers from the Spanish National Cancer Research Centre (CNIO, Madrid), the Memorial Sloan-Kettering Cancer Center (MSKCC, New York) and the Howard Hughes Medical Institute (HHMI, New York).

Sperm and ova are formed through a process of cell division known as meiosis. Both types of cells are haploid gametes, i.e., only containing one copy of each chromosome. In this process, two rounds of cell division reduce the number of chromosomes by half, thus guaranteeing the correct amount of chromosomes of the species after fertilisation. During the first division, DNA double strand breaks are produced deliberately and are then repaired through meiotic recombination. This leads to homologous chromosomes pairing and exchanging of genetic material between both. Errors in these processes can cause problems in the integrity of the genome, thus generating defective sperm or ova.

"Thanks to the use of mice with deficiencies in their ATR expression and drugs inhibiting this protein, we were able to demonstrate that the protein is essential for properly completing the meiotic recombination in spermatocytes acting in the very early stages", Ignasi Roig explains.

The study verified that ATR is needed for the correct recruitment of two proteins, RAD51 and DMC1, involved in the genetic repair process in single-stranded DNA regions created through the processing of DNA double strand breaks originated at the onset of meiosis.

"Spermatocytes with reduced amounts of ATR, or treated with inhibitors, present problems in homologous chromosomes pairing, as well as when repairing broken DNA strands and in the correct formation of the genetic material exchanged between homologous chromosomes, which is indispensable for the correct formation of sperm. This accumulation of anomalies causes a halt in cell progression and induces a programmed cell death, generating a block in spermatogenesis," Roig concludes.

"The identification of the ATR's function in meiotic recombination represents a large advance in the field of mammalian meiosis, given that researchers can finally establish its role in DNA repair in spermatocytes using genetic and pharmacological tools," lead author Sarai Pacheco states.

Since the end of the 1990s it is known that ATR is found in spermatocytes, located alongside other proteins which participate in the meiotic recombination process. This led researchers to think the protein was also involved in the process. The fact that it is essential for the embryonic development of mammals has made it difficult until now to study it.

Finally, the study alerts of the possible side effects of using ATR inhibitor drugs in humans, which are currently being studied as possible anti-cancer treatment drugs. Researchers suggest that they may provoke a block in the production of sperm, and therefore, at least temporarily, cause a decline in male fertility.
-end-


Universitat Autonoma de Barcelona

Related Chromosomes Articles:

GPS for chromosomes: Reorganization of the genome during development
The spatial arrangement of genetic material within the cell nucleus plays an important role in the development of an organism.
Extra chromosomes in cancers can be good or bad
Extra copies of chromosomes are typical in cancerous tumor cells, but researchers taking a closer look find that some extra copies promote cancer growth while others actually inhibit cancer metastasis.
Scientists detail how chromosomes reorganize after cell division
Researchers have discovered key mechanisms and structural details of a fundamental biological process--how a cell nucleus and its chromosomal material reorganizes itself after cell division.
X marks the spot: recombination in structurally distinct chromosomes
A recent study from the laboratory of Stowers Investigator Scott Hawley, PhD, has revealed more details about how the synaptonemal complex performs its job, including some surprising subtleties in function.
How chromosomes change their shape during cell differentiation
Scientists from the RIKEN Center for Biosystems Dynamics Research have provided an explanation of how chromosomes undergo structural changes during cell differentiation.
Key similarities discovered between human and archaea chromosomes
A study led by Indiana University is the first to reveal key similarities between chromosomes in humans and archaea.
Science snapshots: Chromosomes, crystals, and drones
From Berkeley Lab: exploring human origins in the uncharted territory of our chromosomes; scientists grow spiraling new material; drones will fly for days with this new technology
Human artificial chromosomes bypass centromere roadblocks
Human artificial chromosomes (HACs) could be useful tools for both understanding how mammalian chromosomes function and creating synthetic biological systems, but for the last 20 years, they have been limited by an inefficient artificial centromere.
Does rearranging chromosomes affect their function?
Molecular biologists long thought that domains in the genome's 3D organization control how genes are expressed.
Super-resolution microscopy illuminates associations between chromosomes
Thanks to super-resolution microscopy, scientists have now been able to unambiguously identify physical associations between human chromosomes.
More Chromosomes News and Chromosomes Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.