Nav: Home

How does Parkinson's disease develop? Study raises doubts on theory of Parkinson's disease

July 09, 2018

Parkinson's disease was first described by a British doctor more than 200 years' ago. The exact causes of this neurodegenerative disease are still unknown. In a study recently published in eLife, a team of researchers led by Prof. Henning Stahlberg from the Biozentrum of the University of Basel has now questioned the previous understanding of this disease.

The arms and legs tremble incessantly, the muscles become weaker and the movements slower ? these are typical symptoms that many Parkinson's patients suffer from. More than six million people are affected worldwide. In these patients, the dopamine-producing nerve cells in the brain slowly die off. The resulting lack of this neurotransmitter impairs motor function and often also affects the cognitive abilities.

Questionable: protein fibrils cause Parkinson's disease

So far, it was assumed that the protein alpha-synuclein is one of the trigger factors. This protein can clump together and form small needles, so-called fibrils, which accumulate and deposit as Lewy bodies in the nerve cells. These toxic fibrils damage the affected brain cells. A team of scientists led by Prof. Henning Stahlberg from the Biozentrum of the University of Basel, in collaboration with researchers from Hoffmann-La Roche Ltd. and the ETH Zurich, have now artificially generated an alpha-synuclein fibril in the test tube. They have been able to visualize for the first time its three-dimensional structure with atomic resolution. "Contrary to our expectations, the results seem to raise more questions than they can hope to answer," says Stahlberg.

It is important to know that in some congenital forms of Parkinson's disease, affected persons carry genetic defects in the alpha-synuclein gene. These mutations, it is suspected, eventually cause the protein to fold incorrectly, thus forming dangerous fibrils. "However, our 3D structure reveals that a mutated alpha-synuclein protein should not be able to form these type of fibrils," says Stahlberg. "Because of their location, most of these mutations would rather hinder the formation of the fibril structure that we have found." In brief, if the fibril structure causes Parkinson's disease, the genetic defect would have to protect against the disease. But this is not the case. So, it could be possible that a different type of fibril or another form of the protein triggers the disease in these patients.

Study poses new questions

More investigations are now needed to understand this fibril structure. What are the effects of the alpha-synuclein mutations? Do they lead to distinct forms of protein aggregates? What is the role of the fibrils for the nerve cells, and why do these cells die? To date, the exact physiological function of alpha-synuclein is still not known. Since only the symptoms of this neurodegenerative disease can be alleviated with the current medications, new concepts are urgently needed.
-end-


University of Basel

Related Nerve Cells Articles:

How hearing loss can change the way nerve cells are wired
Even short-term blockages in hearing can lead to remarkable changes in the auditory system, altering the behavior and structure of nerve cells that relay information from the ear to the brain, according to a new University at Buffalo study.
Lab-grown nerve cells make heart cells throb
Researchers at Johns Hopkins report that a type of lab-grown human nerve cells can partner with heart muscle cells to stimulate contractions.
Nerve-insulating cells more diverse than previously thought
Oligodendrocytes, a type of brain cell that plays a crucial role in diseases such as multiple sclerosis, are more diverse than have previously been thought, according to a new study by researchers at Karolinska Institutet in Sweden.
Aggregated protein in nerve cells can cause ALS
Persons with the serious disorder ALS, can have a genetic mutation that causes the protein SOD1 to aggregate in motor neurons in the brain and spinal cord.
Aggression causes new nerve cells to be generated in the brain
A group of neurobiologists from Russia and the USA, including Dmitry Smagin, Tatyana Michurina, and Grigori Enikolopov from Moscow Institute of Physics and Technology, have proven experimentally that aggression has an influence on the production of new nerve cells in the brain.
Researchers grow retinal nerve cells in the lab
Johns Hopkins researchers have developed a method to efficiently turn human stem cells into retinal ganglion cells, the type of nerve cells located within the retina that transmit visual signals from the eye to the brain.
Nerve cells warn brain of damage to the inner ear
Some nerve cells in the inner ear can signal tissue damage in a way similar to pain-sensing nerve cells in the body, according to new research from Johns Hopkins.
It takes a lot of nerve: Scientists make cells to aid peripheral nerve repair
Peripheral nerve injuries, such as those resulting from neuropathies, physical trauma or surgery, are common and can cause partial or complete loss of nerve function and a reduced quality of life.
Nerve cells use each other as maps
When nerve cells form in an embryo they have to be guided to their final position by navigating a kind of molecular and cellular 'map' in order to function properly.
What hundreds of biomolecules tell us about our nerve cells
Researchers at the Luxembourg Centre for Systems Biomedicine, of the University of Luxembourg, have, under Dr.

Related Nerve Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...