Nav: Home

Releasing our inner jellyfish in the fight against infection

July 09, 2018

Mucus is able to protect us from infection thanks to ancient genes that have been conserved throughout 350 million years of evolution - dating back to our days as a jellyfish.

Now scientists are hoping to unlock the secret of how mucus fights infection and pave the way for developing new antibacterial substances in the future.

Led by a team from Newcastle University, UK, the study is published this month in the Nature journal Biofilms and Microbiomes highlights the evolutionary importance of mucus.

Despite the important role it plays as a first line of defense against infection, the way in which the mucin glycoprotein - which makes up mucus - interacts with bacteria is still poorly understood.

"The mucus in our bodies today is essentially the same blue print as that developed by the corals and jelly fish from millions of years ago," explains lead author Professor Grant Burgess.

"It's found all over our body - in our gut, our eyes, our lungs - and is nature's own bacterial barrier cream.

"But whilst it is good at stopping bacteria in their tracks, we don't fully understand how it does this. We do know that mucus has binding sites for the bacteria convincing them that they are bound to the cell surface below the mucus layer.

"Consequently the bacteria will stick to the mucus and be prevented from reaching and infecting the cells - unlocking the complete mechanisms of how mucus works as an antibacterial barrier could provide useful insights into developing new antibacterial substances of the future."

Tackling the rise in Anti-Microbial Resistance (AMR)

Worldwide, concern is growing over the threat from bacteria that are resistant to the so-called "last resort" class of antibiotics known as Carbapenems.

The emergence of resistant and untreatable bacteria and limited new antibiotic discovery means the race is on to find new ways of fighting infection.

The secretion of a mucus layer is the first line of defence for many organisms.

First evolving in the cnidaria (anemones, corals and jellyfish) and ctenophores (comb jellies), these organisms are some of the most distant relatives of humans.

"Considering this, it's incredible that we still share similar genes," says Professor Burgess.

"Creatures less evolved than corals and jellyfish, such as the sponges, do not have a mucus barrier and so bacteria live throughout their tissues.

"But what we are seeing here are genes that are vital not just to our survival but to the survival of all metazoans on the planet, that is multicellular animals made up of different tissues and organs.

Studying the fight between bacteria and coral mucus, for example, might help us to discover new drugs or strategies to cure major human diseases.

"While mucus plays a role as a barrier to microbes, it is also vital for moving particulates, such as clearing dust and debris from the lungs, and this same process is used by early animals such as corals and jellyfish for feeding and cleaning their surfaces" says Professor John Bythell a co-author on the paper.

"Understanding the different roles of mucins and how and why they evolved may help us understand how pathogens can overcome these defences."

Newcastle University

Related Bacteria Articles:

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
Drug diversity in bacteria
Bacteria produce a cocktail of various bioactive natural products in order to survive in hostile environments with competing (micro)organisms.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at