Nav: Home

Altitude sickness drug appears to slow progression of glioblastoma

July 09, 2018

A drug used to treat altitude sickness -- as well as glaucoma, epilepsy, heart failure and seizures -- may also offer significant gains for patients with a fast-growing brain tumor known as glioblastoma, according to a study published July 4, 2018, in the journal Science Translational Medicine.

The drug, acetazolamide, sold under the trade name Diamox, is "cheap to make, easy to take and has limited side effects," said study director Bahktiar Yamini, MD, a professor of neurosurgery at the University of Chicago Medicine.

"I take it myself, whenever I go to the Rocky Mountains," he said, "two pills a day." The most common side effect of Diamox is "a metallic taste when drinking something carbonated."

The most frequently used chemotherapy for gliomas is a drug called temozolomide (TMZ). However, not all patients respond to this drug. Median survival with this disease is about 14 months.

TMZ acts by damaging DNA in ways that can kill tumor cells. But some tumor cells are able to block or repair this type of DNA damage. This limits the drug's impact.

The researchers found that most glioma patients with high levels of a protein called BCL-3 (B cell CLL/lymphoma 3) were unresponsive to the beneficial effects of TMZ. BCL-3 shields cancer cells from TMZ damage by activating a protective enzyme known as carbonic anhydrase II.

Acetazolamide, however, is a carbonic anhydrase inhibitor. It can restore TMZ's ability to kill tumor cells. Adding acetazolamide to TMZ enabled mice with gliomas to survive longer.

"We tested this combination treatment strategy in several animal models," Yamini said. It cured some of them. Others had a 30 to 40 percent increase in survival time.

When Yamini and colleagues looked at BCL-3 level from previous human studies, they found that patients with lower levels of BCL-3 who were treated with TMZ survived longer than patients who had high levels of this biomarker.

"An important feature of predictors like BCL-3 is that they are informative," the authors note. "They can identify pathways to improve treatment response." By examining those pathways, the authors identified carbonic anhydrase inhibitors, such as acetazolamide, as a way to reduce resistance to temozolomide.

"Our data," they note, demonstrate that it is the "induction of CAII by TMZ that is important in modulating response to therapy."

Validating the use of BCL-3 to predict which patients will benefit from the use of temozolomide will require verification in a prospective randomized clinical trial, the authors note. They also suggest that repurposing acetazolamide along with temozolamide might be particularly effective in a subgroup of appropriate patients with tumors that have high BCL-3 expression. They have already organized a trial at several Chicago area institutions and hope to recruit patients soon.
-end-
The study, "BCL3 expression promotes resistance to alkylating chemotherapy in gliomas," was funded by the National Institutes of Health and the Ludwig Center for Metastasis Research at the University of Chicago. Additional authors include Longtao Wu, Giovanna Bernal, Kirk Cahill, Peter Pytel, Carrie Fitzpatrick, Heather Mashek and Ralph Weichselbaum, all from the University of Chicago.

DOI: 10.1126/scitranslmed.aar2238

University of Chicago Medical Center

Related Glioblastoma Articles:

Brain cancer discovery reveals clues in quest for new therapies
Researchers at the University of Edinburgh have pinpointed two key molecules that drive the growth of an aggressive type of adult brain cancer.
Immunotherapy for glioblastoma well tolerated; survival gains observed
A phase one study of 11 patients with glioblastoma who received injections of an investigational vaccine therapy and an approved chemotherapy showed the combination to be well tolerated while also resulting in unexpectedly significant survival increases, researchers at the Duke Cancer Institute report.
Glioblastoma patients may benefit from a vaccine-chemotherapy combination
A vaccine targeting cytomegalovirus (CMV) antigen pp65, combined with high-dose chemotherapy (temozolomide), improved both progression-free survival and overall survival for a small group of glioblastoma (GBM) patients.
Case comprehensive cancer center analyzes brain tumor data, doubles known risk factors for glioma
A massive new study involving blood samples from over 30,000 individuals has identified 13 new genetic risk factors for glioma, the most common type of malignant brain tumor in adults.
Glioblastoma clinical trial shows combined therapy extends life for patients 65 and older
Treating older patients who have malignant brain cancer with the chemotherapy drug temozolomide plus a short course of radiation therapy extends survival by two months compared to treating with radiation alone, show clinical trial results published in the New England Journal of Medicine.
Revolutionary approach for treating glioblastoma works with human cells
UNC-Chapel Hill researchers describe how human stem cells, made from human skin cells, can hunt down and kill human brain cancer, a critical and monumental step toward clinical trials -- and real treatment.
Researchers discover potential new target for treating glioblastoma
Scientists have found a way to inhibit the growth of glioblastoma, a type of brain cancer with low survival rates, by targeting a protein that drives growth of brain tumors, according to research from the Peter O'Donnell Jr.
Cell of origin affects malignancy and drug sensitivity of brain tumors
Patients with glioblastoma have very poor prognosis since there are no effective therapies.
A new prognostic classification may help clinical decision-making in glioblastoma
New research shows that taking molecular variables into account will improve the prognostic classification of the lethal brain cancer called glioblastoma (GBM).
Inhibiting a DNA-repairing protein in brain could be key to treating aggressive tumors
Researchers at the University of Leeds found that inhibiting this protein, called RAD51, helped increase the effectiveness of radiotherapy in killing off glioblastoma cells in the lab.

Related Glioblastoma Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...