Nav: Home

PPPL diagnostic is key to world record of German fusion experiment

July 09, 2018

When Germany's Wendelstein 7-X (W7-X) fusion facility set a world record for stellarators recently, a finely tuned instrument built and delivered by the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) proved the achievement. The record strongly suggests that the design of the stellarator can be developed to capture on Earth the fusion that drives the sun and stars, creating "a star in a jar" to generate a virtually unlimited supply of electric energy.

The record achieved by the W7-X, the world's largest and most advanced stellarator, was the highest "triple product" that a stellarator has ever created. The product combines the temperature, density and confinement time of a fusion facility's plasma -- the state of matter composed of free electrons and atomic nuclei that fuels fusion reactions -- to measure how close the device can come to producing self-sustaining fusion power. (The triple product was 6 x 1026 degrees x second per cubic meter -- the new stellarator record.)

Spectrometer maps W7-X temperature

The achievement produced temperatures of 40 million degrees for the ions and an energy confinement time, which measures how long it takes energy to leak out across the confining magnetic fields, of 0.22 seconds. (The density was 0.8 x 1020 particles per cubic meter.) Measuring the temperature was an x-ray imaging crystal spectrometer (XICS) built by PPPL physicist Novimir Pablant, now stationed at W7-X, and engineer Michael Mardenfeld at PPPL. "The spectrometer provided the primary measurement," said PPPL physicist Sam Lazerson, who also collaborates on W7-X experiments.

Pablant implemented the device with scientists and engineers of the Max Planck Institute of Plasma Physics (IPP), which operates the stellarator in the Baltic Sea town of Greifswald, Germany. "It has been a great experience to work closely with my colleagues here on W7-X," Pablant said. "Installing the XICS system was a major undertaking and it has been a pleasure to work with this world-class research team. The initial results from these high-performance plasmas are very exciting, and we look forward to using the measurements from our instrument to further understanding of the confinement properties of W7-X, which is a truly unique magnetic fusion experiment."

Researchers at IPP welcomed the findings. "Without XICS we could not have confirmed the record," said Thomas Sunn Pedersen, director of stellarator edge and divertor physics at IPP. Concurred physicist Andreas Dinklage, lead author of a Nature Physics paper confirming a key feature of the W7-X physical design: "The XICS data set was one of the very valuable inputs that confirmed the physics predictions."

PPPL physicist David Gates, technical coordinator of the U.S. collaboration on W7-X, oversaw construction of the instrument. "The XICS is an incredibly precise device capable of measuring very small shifts in wavelength," said Gates. "It is a crucial part of our collaboration and we are very grateful to have the opportunity to participate in these important experiments on the groundbreaking W7-X device."

PPPL provides addedl components

PPPL has designed and delivered additional components installed on the W7-X. These include a set of large trim coils that correct errors in the magnetic field that confines W7-X plasma, and a scraper unit that will lessen the heat reaching the divertor that exhausts waste heat from the fusion facility.

The recent world record was a result of upgrades that IPP made to the stellarator following the initial phase of experiments, which began in December 2015. Improvements included new graphite tiles that enabled the higher temperatures and longer duration that produced the results. A new round of experiments is to begin this July using the new scraper unit that PPPL delivered.

Stellarators, first constructed in the 1950s under PPPL founder Lyman Spitzer, can operate in a steady state, or continuous manner, with little risk of the plasma disruptions that doughnut-shaped tokamak fusion facilities face. But tokamaks are simpler to design and build, and historically have confined plasma better, which accounts for their much wider use in fusion laboratories around the world.

An overall goal of the W7-X is to show that the twisty stellarator design can confine plasma just as well as tokamaks. When combined with the ability to operate virtually free of disruptions, such improvement could make stellarators excellent models for future fusion power plants.
PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas -- ultra-hot, charged gases -- and to developing practical solutions for the creation of fusion energy. The Laboratory is managed by the University for the U.S. Department of Energy's Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit

DOE/Princeton Plasma Physics Laboratory

Related Plasma Articles:

Table top plasma gets wind of solar turbulence
Scientists from India and Portugal recreate solar turbulence on a table top using a high intensity ultrashort laser pulse to excite a hot, dense plasma and followed the evolution of the giant magnetic field generated by the plasma dynamics.
Getting the biggest bang out of plasma jets
Capillary discharge plasma jets are created by a large current that passes through a low-density gas in what is called a capillary chamber.
Neptune: Neutralizer-free plasma propulsion
Plasma propulsion concepts are gridded-ion thrusters that accelerate and emit more positively charged particles than negatively charged ones.
UCLA researchers discover a new cause of high plasma triglycerides
People with hypertriglyceridemia often are told to change their diet and lose weight.
Where does laser energy go after being fired into plasma?
An outstanding conundrum on what happens to the laser energy after beams are fired into plasma has been solved in newly-published research at the University of Strathclyde.
New feedback system could allow greater control over fusion plasma
A physicist has created a new system that will let scientists control the energy and rotation of plasma in real time in a doughnut-shaped machine known as a tokamak.
PPPL scientist uncovers physics behind plasma-etching process
PPPL physicist Igor Kaganovich and collaborators have uncovered some of the physics that make possible the etching of silicon computer chips, which power cell phones, computers, and a huge range of electronic devices.
Calculating 1 billion plasma particles in a supercomputer
At the National Institutes of Natural Sciences National Institute for Fusion Science (NIFS) a research group using the NIFS 'Plasma Simulator' supercomputer succeeded for the first time in the world in calculating the movements of one billion plasma particles and the electrical field constructed by those particles.
Anti-tumor effect of novel plasma medicine caused by lactate
Nagoya University researchers developed a new physical plasma-activated salt solution for use as chemotherapy.
Clarifying the plasma oscillation by high-energy particles
The National Institute for Fusion Science has developed a new code that can simulate the movement of plasma and, simultaneously, the movement of particles circulating at high speeds.

Related Plasma Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#532 A Class Conversation
This week we take a look at the sociology of class. What factors create and impact class? How do we try and study it? How does class play out differently in different countries like the US and the UK? How does it impact the political system? We talk with Daniel Laurison, Assistant Professor of Sociology at Swarthmore College and coauthor of the book "The Class Ceiling: Why it Pays to be Privileged", about class and its impacts on people and our systems.