Nav: Home

Stronger west winds blow ill wind for climate change

July 09, 2018

Stronger westerly winds in the Southern Ocean could be the cause of a sudden rise in atmospheric CO2 and temperatures in a period of less than 100 years about 16,000 years ago, according to a study published in Nature Communications.

The westerly winds during that event strengthened as they contracted closer to Antarctica, leading to a domino effect that caused an outgassing of carbon dioxide from the Southern Ocean into the atmosphere.

This contraction and strengthening of the winds is very similar to what we are already seeing today as a result of human caused climate change.

"During this earlier period, known as Heinrich stadial 1, atmospheric CO2 increased by a total of ~40ppm, Antarctic surface atmospheric temperatures increased by around 5°C and Southern Ocean temperatures increased by 3°C," said lead author Dr Laurie Menviel, a Scientia Fellow with the University of New South Wales (Sydney).

"With this in mind, the contraction and strengthening of westerly winds today could have significant implications for atmospheric CO2 concentrations and our future climate."

Scientists know changes in atmospheric carbon dioxide have profound impacts on our climate system. This is why researchers are so interested in Heinrich events, where rapid increases in atmospheric carbon dioxide occur over a very short period of time.

Heinrich event 1, which occurred about 16,000 years ago, is a favorite to study because alterations in ocean currents, temperature, ice and sea levels are clearly captured in an array of geological measures. This allows theories to be tested against these changes.

Until now, many of the propositions put forward for the carbon dioxide spike struggled to explain its timing, rapidity and magnitude.

But when the researchers used climate models to replicate an increase in the strength of westerly winds as they contracted towards the Antarctic, the elements began to align. The stronger winds caused a domino effect that not only reproduced the increase in atmospheric carbon dioxide but also other changes seen during Heinrich 1.

The stronger winds had a direct impact on the ocean circulation, increasing the formation of bottom water along the Antarctic coast and enhancing the transport of carbon rich waters from the deep Pacific Ocean to the surface of the Southern Ocean. As a result, about 100Gt of carbon dioxide was emitted into the atmosphere by the Southern Ocean.

Today, observations suggest westerly winds are again contracting southwards and getting stronger in response to the warming of our planet.

"The carbon exchange in particular between the Southern Ocean and the atmosphere matter deeply for our climate. It is estimated the Southern Ocean absorbs around 25% of our atmospheric carbon emissions and that ~43% of that carbon is taken up by the Ocean south of 30S," said Dr Menviel.

"With westerly winds already contracting towards Antarctica, it's important to know if this event is an analogue for what we may see in our own future.

"For this reason, it is vital to bring more observational networks into the Southern Ocean to monitor these changes. We need a clear warning if we are approaching a point in our climate system where we may see a spike in atmospheric carbon dioxide and the rapid temperature rise that inevitably follows."
-end-
Paper: Menviel L., Spence P., Yu J.,Chamberlain M. A., Matear R. J., Meissner K. J., England M. H. Southern Hemisphere westerlies as a driver of the early deglacial atmospheric CO2 rise. Nature Communications. DOI: 10.1038/s41467-018-04876-4

University of New South Wales

Related Antarctica Articles:

Flat Antarctica
Temperatures in the Arctic are increasing twice as fast as in the rest of the globe, while the Antarctic is warming at a much slower rate.
Antarctica 'greening' due to climate change
Plant life on Antarctica is growing rapidly due to climate change, scientists have found.
Teleconnection between the tropical Pacific and Antarctica
The higher the seawater temperature in the tropical Pacific, the more likely ice breakup will occur in East Antarctica, according to Hokkaido University researchers.
Thought Antarctica's biodiversity was doing well? Think again
Antarctica and the Southern Ocean are not in better environmental shape than the rest of the world.
Antarctica's biodiversity is under threat
A unique international study has debunked the popular view that Antarctica and the Southern Ocean are in much better ecological shape than the rest of the world.
Water is streaming across Antarctica
In the first such continent-wide survey, scientists have found extensive drainages of meltwater flowing over parts of Antarctica's ice during the brief summer.
Unraveling the mystery of snowflakes, from the Alps to Antarctica
Using a special multi-angle camera, EPFL researchers have gained important insights into the structure of snowflakes.
Poor outlook for biodiversity in Antarctica: Study finds
An international study led by Monash scientists has debunked the popular view that Antarctica and the Southern Ocean are in a much better environmental shape than the rest of the world.
Poor outlook for biodiversity in Antarctica
The popular view that Antarctica and the Southern Ocean are in a much better environmental shape than the rest of the world has been brought into question in a study publishing on March 28 in the open access journal PLOS Biology, by an international team lead by Steven L.
New species discovered in Antarctica
A team of Japanese scientists has discovered a new species of polychaete, a type of marine annelid worm, 9-meters deep underwater near Japan's Syowa Station in Antarctica, providing a good opportunity to study how animals adapt to extreme environments.

Related Antarctica Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#532 A Class Conversation
This week we take a look at the sociology of class. What factors create and impact class? How do we try and study it? How does class play out differently in different countries like the US and the UK? How does it impact the political system? We talk with Daniel Laurison, Assistant Professor of Sociology at Swarthmore College and coauthor of the book "The Class Ceiling: Why it Pays to be Privileged", about class and its impacts on people and our systems.