Nav: Home

A clearer picture of global ice sheet mass

July 09, 2019

Fluctuations in the masses of the world's largest ice sheets carry important consequences for future sea level rise, but understanding the complicated interplay of atmospheric conditions, snowfall input and melting processes has never been easy to measure due to the sheer size and remoteness inherent to glacial landscapes.

Much has changed for the better in the past decade, according to a new review paper co-authored by researchers at the University of Colorado Boulder, NASA, Utrecht University and Delft University of Technology and recently published in the Review of Geophysics.

The study outlines improvements in satellite imaging and remote sensing equipment that have allowed scientists to measure ice mass in greater detail than ever before.

"We've come a long way in the last 10 years from an observational perspective," said Jan Lenaerts, lead author of the research and an assistant professor in CU Boulder's Department of Atmospheric and Oceanic Sciences (ATOC). "Knowing what happens to ice sheets in terms of mass in, mass out allows us to better connect climate variations to ice mass and how much the mass has changed over time."

Ice sheets primarily gain mass from precipitation and lose it due to solid ice discharge and runoff of melt water. Precipitation and runoff, along with other surface processes, collectively determine the surface mass balance. The Antarctic Ice Sheet, the world's largest, is cold year-round with only marginal summer melting. A small increase or decrease in yearly snowfall, then, can make a considerable difference in surface mass because the addition or subtraction is compounded over a massive area.

"Snowfall is dominant over Antarctica and will stay that way for the next few decades," Lenaerts said. "And we've seen that as the atmosphere warms due to climate change, that leads to more snowfall, which somewhat mitigates the loss of ice sheet mass there. Greenland, by contrast, experiences abundant summer melt, which controls much of its present and future ice loss."

In years past, climate models would have been unable to render the subtleties of snowfall in such a remote area. Now, thanks to automated weather stations, airborne sensors and Earth-orbit satellites such as NASA's Gravity Recovery and Climate experiment (GRACE) mission, these models have been improved considerably. They produce realistic ice sheet surface mass balance, allow for greater spatial precision and account for regional variation as well as wind-driven snow redistribution--a degree of detail that would have been unheard of as recently as the early 2000s.

"If you don't have the input variable right, you start off on the wrong foot," Lenaerts said. "We've focused on snowfall because it heavily influences the ice sheet's fate. Airborne observations and satellites have been instrumental in giving a better view of all these processes."

Ground-based radar systems and ice core samples provide a useful historical archive, allowing scientists to go back in time and observe changes in the ice sheet over long periods of time. But while current technologies allow for greater spatial monitoring, they lack the ability to measure snow density, which is a crucial variable to translate these measurements into mass changes.

The biggest opportunity may lie in cosmic ray counters, which measure surface mass balance directly by measuring neutrons produced by cosmic ray collisions in Earth's atmosphere, which linger in water and can be read by a sensor. Over long periods of time, an array of these devices could theoretically provide even greater detail still.

Overall, Lenaerts said, the field of ice sheet observation has come of age in recent years, but still stands to benefit from additional resources.

"The community of researchers studying these issues is still relatively small, but it's already a global community and interest is growing," he said. "We'd like to get to a point where ice sheet mass processes are factored into global climate and Earth system models, to really show that bigger picture."
The newly published paper is part of the Grand Challenges special collection created for American Geophysical Union's Centennial, highlighting key areas where major future work and discovery are needed to address fundamental questions in understanding the Earth, its space environment and the history of the planet and its solar system. It was co-authored by Brooke Medley of NASA Cryospheric Sciences Laboratory, Michiel van den Broeke of Utrecht University and Bert Wouters of Utrecht University and Delft University of Technology. NASA provided funding for the study.

University of Colorado at Boulder

Related Climate Change Articles:

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.
Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
Predicting climate change
Thomas Crowther, ETH Zurich identifies long-disappeared forests available for restoration across the world.
Historical climate important for soil responses to future climate change
Researchers at Lund University in Sweden, in collaboration with colleagues from the University of Amsterdam, examined how 18 years of drought affect the billions of vital bacteria that are hidden in the soil beneath our feet.
Can forests save us from climate change?
Additional climate benefits through sustainable forest management will be modest and local rather than global.
From crystals to climate: 'Gold standard' timeline links flood basalts to climate change
Princeton geologists used tiny zircon crystals found in volcanic ash to rewrite the timeline for the eruptions of the Columbia River flood basalts, a series of massive lava flows that coincided with an ancient global warming period 16 million years ago.
Think pink for a better view of climate change
A new study says pink noise may be the key to separating out natural climate variability from climate change that is influenced by human activity.
More Climate Change News and Climate Change Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab