Nav: Home

Nanoscale visualization of the distribution and optical behavior of dopant in GaN

July 09, 2019

In Gallium Nitride (GaN) implanted with a small amount of magnesium (Mg), NIMS succeeded for the first time in visualizing the distribution and optical behavior of the implanted Mg at the nanoscale which may help in improving electrical performance of GaN based devices. Some of the mechanisms by which introduced Mg ions convert GaN into a p-type semiconductor are also revealed. These findings may significantly expedite the identification of optimum conditions for Mg implantation vital to the mass production of GaN power devices.

The development of GaN based power devices--a promising energy-saving technology--requires fabrication of both n- and p-type GaN semiconductors. p-type GaN semiconductors can be mass produced by introducing Mg ions into GaN wafers and subjecting the wafers to thermal treatment. However, no method existed for assessing the effect of Mg concentrations and thermal treatment temperature on the distribution and optical behavior of Mg implanted into GaN at nanoscale dimensions. In addition, the mechanisms by which p-type GaN forms remained unclear so far. These issues had been hindering the development of technologies enabling mass production of GaN devices.

For this research, we prepared slanted cross-sections of Mg ion-implanted GaN wafers by polishing the wafers at an angle and analyzed the distribution of luminescence intensity on the cross-sections using a cathodoluminescence technique. As a result, we found that Mg atoms implanted several tens of nanometers beneath the wafer surface had been activated while those immediately below the surface had not been activated (figure at left). In addition, we found using atom probe tomography that Mg atoms, when implanted in high concentrations, develop into either disc- or rod-shaped deposits depending on temperature (figure at right). The integration of different analytical results generated by these latest microscopy techniques indicated that Mg atoms implanted in the vicinity of the wafer surface may develop into deposits under certain temperature conditions, and thus prevents them from activating.

The results of this research have provided vital guidance for the development of ion-doped p-type GaN layers. Furthermore, the techniques developed during this project for the analysis of impurity distributions are applicable not only in homogeneous wafers but also in GaN device materials with varying structures. The use of these techniques may therefore speed the development of high-performance GaN devices.
-end-
This project was carried out jointly by a research team led by Tadakatsu Ohkubo (Leader of the CL / EBIC / Atom Probe Group, Center for GaN Characterization and Analysis, Research Network and Facility Services Division [RNFS], NIMS) and Jun Chen (Senior Researcher, CL / EBIC / Atom Probe Group, Center for GaN Characterization and Analysis, RNFS, NIMS) and, a research team led by Masaharu Edo (Senior Manager of the Advanced Materials Reserch Dept., Materials Fundamental Technology Research Center, Advanced Technology Laboratory, Corporate R&D Headquarters, Fuji Electric Co. Ltd.).

This project was conducted under the MEXT "Program for research and development of next-generation semiconductor to realize energy- saving society (Center for GaN Characterization and Analysis)."

Part of this research was published online in Applied Physics Express, a journal of the Japan Society of Applied Physics, on April 11, 2019.

Contacts

(Regarding this research)

Tadakatsu Ohkubo
CL/EBIC/Atom Probe Group
Center for GaN Characterization and Analysis
Research Network and Facility Services Division
National Institute for Materials Science
Tel: +81-29-859-2716
E-Mail: OHKUBO.Tadakatsu@nims.go.jp

(For general inquiries)

Public Relations Office
National Institute for Materials Sciences
Tel: +81-29-859-2026
Fax: +81-29-859-2017
E-Mail: pressrelease@ml.nims.go.jp

National Institute for Materials Science, Japan

Related Nanoscale Articles:

Information storage with a nanoscale twist
Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives.
Researchers use acoustic waves to move fluids at the nanoscale
A team of mechanical engineers at the University of California San Diego has successfully used acoustic waves to move fluids through small channels at the nanoscale.
Core technology springs from nanoscale rods
Rice University scientists have demonstrated a method for reversibly changing the light emitted from metallic nanorods by moving atoms from one place to another inside the particles.
Tooth decay -- drilling down to the nanoscale
With one in two Australian children reported to have tooth decay in their permanent teeth by age 12, researchers from the University of Sydney believe they have identified some nanoscale elements that govern the behavior of our teeth.
Beating the heat a challenge at the nanoscale
A little heat from a laser can disrupt measurements of materials at the nanoscale, according to Rice University scientists.
New nanoscale technologies could revolutionize microscopes, study of disease
Research completed through a collaboration with University of Missouri engineers, biologists, and chemists could transform how scientists study molecules and cells at sub-microscopic (nanoscale) levels.
New tool allows scientists to visualize 'nanoscale' processes
Chemists at UC San Diego have developed a new tool that allows scientists for the first time to see, at the scale of five billionths of a meter, 'nanoscale' mixing processes occurring in liquids.
Heat and light get larger at the nanoscale
In a new study recently published in Nature Nanotechnology, researchers from Columbia Engineering, Cornell, and Stanford have demonstrated heat transfer can be made 100 times stronger than has been predicted, simply by bringing two objects extremely close -- at nanoscale distances -- without touching.
Revealing the ion transport at nanoscale
EPFL researchers have shown that a law of physics having to do with electron transport at nanoscale can also be analogously applied to the ion transport.
Systems analysis -- from the nanoscale to the global
Two major research grants were announced today by the Engineering and Physical Sciences Research Council.

Related Nanoscale Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...