Nav: Home

On-demand control of terahertz and infrared waves

July 09, 2019

The ability to control infrared and terahertz waves using magnetic or electric fields is one of the great challenges in physics that could revolutionise opto-electronics, telecommunications and medical diagnostics. A theory from 2006 predicts that it should be possible to use graphene - a monoatomic layer of carbon atoms- in a magnetic field not only to absorb terahertz and infrared light on demand but also to control the direction of the circular polarisation. Researchers from the University of Geneva (UNIGE), Switzerland, and the University of Manchester have succeeded in testing this theory and achieved the predicted results. The study, to be published in the journal Nature Nanotechnology, shows that the scientists found an efficient way to control infrared and terahertz waves. It also shows that graphene is keeping its initial promises, and is making its way to be the material of the the future, whether on earth or in space.

"There exist a class of the so-called Dirac materials, where the electrons behave as if they do not have a mass, similar to the light particles, the photons", explains Alexey Kuzmenko, a researcher in the Department of Quantum Matter Physics in UNIGE's Science Faculty, who conducted this research together with Ievgeniia Nedoliuk. One of such materials is graphene, a monolayer of carbon atoms arranged in honeycomb structure, analogue to graphite used, in particular to make pencils.

The interaction between graphene and light suggests that this material could be used to control infrared and terahertz waves. "That would be a huge step forward for optoelectronics, security, telecommunications and medical diagnostics," points out the Geneva-based researcher.

Backing up an old theory via experimentation

A theoretical prediction from 2006 posited that if a Dirac material, is placed in a magnetic field, it will produce a very strong cyclotron resonance. "When a charged particle is in the magnetic field, it moves on a circular orbit and absorbs the electromagnetic energy at the orbiting, or cyclotron, frequency, as for example it happens in the Large Hadron Collider at CERN", explains Alexey Kuzmenko. "And when the particles have charge but no mass, as electrons in graphene, the absorption of light is at its maximum!"

To demonstrate this maximum absorption, the physicists needed a very pure graphene, so that the electrons travelling long distances would not scatter on impurities or crystal defects. But this level of purity and lattice order are very difficult to obtain and are only achieved when graphene is encapsulated in another two-dimensional material - boron nitride.

The UNIGE researchers teamed up with the group from the University of Manchester led by André Geim - the 2010 Nobel Prize winner in Physics for discovering graphene - to develop extremely pure graphene samples. These samples, which were exceptionally large for this type of graphene, were nevertheless too small to quantify the cyclotron resonance with well-established techniques. This is is why the Geneva researchers built a special experimental setup to concentrate the infrared and terahertz radiation on small samples of pure graphene in the magnetic field. "And the result of the experiment confirmed the theory from 2006!" adds Alexey Kuzmenko.

Custom-controlled polarisation

The results demonstrated for the first time that a colossal magneto-optical effect occurs indeed if a layer of pure graphene is used. "The maximum possible magneto-absorption of the infrared light is now achieved in a monoatomic layer," says Alexey Kuzmenko.

In addition, the physicists found that it was possible to choose which circular polarisation - left or right - should be absorbed. "Natural or intrinsic graphene is electrically neutral and absorbs all the light, regardless of its polarisation. But if we introduce electrically charged carriers, either positive or negative, we can choose which polarisation is absorbed, and this works both in the infrared and terahertz ranges," continues the scientist. This ability plays a crucial role, especially in the pharmacy, where certain key drug molecules interact with light depending on polarization direction. Interestingly, this control is considered promising for the search of life on exoplanets, since it is possible to observe the signatures of the molecular chirality inherent in the biological matter.

Finally, the physicists found that to observe a strong effect in the terahertz range, it is sufficient to apply magnetic fields, which could be generated already by inexpensive permanent magnet .

Now that the theory has been confirmed, the researchers will continue to work on magnetically adjustable sources and detectors of terahertz and infrared light. Graphene continues to surprise them
-end-


Université de Genève

Related Graphene Articles:

New chemical method could revolutionize graphene
University of Illinois at Chicago scientists have discovered a new chemical method that enables graphene to be incorporated into a wide range of applications while maintaining its ultra-fast electronics.
Searching beyond graphene for new wonder materials
Graphene, the two-dimensional, ultra lightweight and super-strong carbon film, has been hailed as a wonder material since its discovery in 2004.
New method of characterizing graphene
Scientists have developed a new method of characterizing graphene's properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials.
Chemically tailored graphene
Graphene is considered as one of the most promising new materials.
Beyond graphene: Advances make reduced graphene oxide electronics feasible
Researchers have developed a technique for converting positively charged (p-type) reduced graphene oxide (rGO) into negatively charged (n-type) rGO, creating a layered material that can be used to develop rGO-based transistors for use in electronic devices.
The Graphene 2017 Conference connects Barcelona with the international graphene-based industry
This prestigious Conference to be held at the Barcelona International Convention Centre (March 28-31) aims to bring together academia and industry to integrate new graphene technologies into practical applications.
Graphene from soybeans
A breakthrough by CSIRO-led scientists has made the world's strongest material more commercially viable, thanks to the humble soybean.
First use of graphene to detect cancer cells
By interfacing brain cells onto graphene, researchers at the University of Illinois at Chicago have shown they can differentiate a single hyperactive cancerous cell from a normal cell, pointing the way to developing a simple, noninvasive tool for early cancer diagnosis.
Development of graphene microwave photodetector
DGIST developed cryogenic microwave photodetector which is able to detect 100,000 times smaller light energy compared to the existing photedetectors.
Adding hydrogen to graphene
IBS researchers report a fundamental study of how graphene is hydrogenated.

Related Graphene Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...