Nav: Home

Storing data in music

July 09, 2019

Manuel Eichelberger and Simon Tanner, two ETH doctoral students, store data in music. This means, for example, that background music can contain the access data for the local Wi-Fi network, and a mobile phone's built-in microphone can receive this data. "That would be handy in a hotel room," Tanner says, "since guests would get access to the hotel Wi-Fi without having to enter a password on their device."

To store the data, the two doctoral students and their colleague, Master's student Gabriel Voirol, make minimal changes to the music. In contrast to other scientists' attempts in recent years, the researchers state that their new approach allows higher data transfer rates with no audible effect on the music. "Our goal was to ensure that there was no impact on listening pleasure," Eichelberger says.

Tests the researchers have conducted show that in ideal conditions, their technique can transfer up to 400 bits per second without the average listener noticing the difference between the source music and the modified version (see also the audio sample). Given that under realistic conditions a degree of redundancy is necessary to guarantee transmission quality, the transfer rate will more likely be some 200 bits - or around 25 letters - per second. "In theory, it would be possible to transmit data much faster. But the higher the transfer rate, the sooner the data becomes perceptible as interfering sound, or data quality suffers," Tanner adds.

Dominant notes hide information

The researchers from ETH Zurich's Computer Engineering and Networks Laboratory use the dominant notes in a piece of music, overlaying each of them with two marginally deeper and two marginally higher notes that are quieter than the dominant note. They also make use of the harmonics (one or more octaves higher) of the strongest note, inserting slightly deeper and higher notes here, too. It is all these additional notes that carry the data. While a smartphone can receive and analyse this data via its built-in microphone, the human ear doesn't perceive these additional notes.

"When we hear a loud note, we don't notice quieter notes with a slightly higher or lower frequency," Eichelberger says. "That means we can use the dominant, loud notes in a piece of music to hide the acoustic data transfer." It follows that the best music for this kind of data transfer has lots of dominant notes - pop songs, for instance. Quiet music is less suitable.

To tell the decoder algorithm in the smartphone where it needs to look for data, the scientists use very high notes that the human ear can barely register: they replace the music in the frequency range 9.8-10 kHz with an acoustic data stream that carries the information on when and where across the rest of the music's frequency spectrum to find the data being transmitted.

From the loudspeaker to the mic

The transmission principle behind this technique is fundamentally different from the well-known RDS system as used in car radios to transmit the radio station's name and details of the music that is playing. "With RDS, the data is transmitted using FM radio waves. In other words, data is sent from the FM transmitter to the radio device," Tanner explains. "What we're doing is embedding the data in the music itself - transmitting data from the loudspeaker to the mic."
-end-
Reference

Eichelberger M, Tanner S, Voirol G, Wattenhofer R: Imperceptible Audio Communication. 44th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, 12-17 May 2019

ETH Zurich

Related Smartphone Articles:

Inexpensive retinal diagnostics via smartphone
Retinal damage due to diabetes is now considered the most common cause of blindness in working-age adults.
Nanosensor can alert a smartphone when plants are stressed
MIT engineers can closely track how plants respond to stresses such as injury, infection, and light damage using sensors made of carbon nanotubes.
Smartphone apps not accurate enough to spot all skin cancers
Smartphone apps that assess the risk of suspicious moles cannot be relied upon to detect all cases of skin cancer, finds a review of the evidence published by The BMJ today.
Detecting mental and physical stress via smartphone
The team led by Professor Enrico Caiani of the Department of Electronics, Information and Bioengineering at Politecnico di Milano, Italy, has shown that it is possible to use our smartphones without any other peripherals or wearables to accurately extract vital parameters, such as heart beat rate and stress level.
Smartphone app reminds heart patients to take their pills
Heart patients using a smartphone app reminder are more likely to take their medication than those who receive written instructions, according to a study presented at the 45th Argentine Congress of Cardiology (SAC 2019).
Object identification and interaction with a smartphone knock
A KAIST team has featured a new technology, 'Knocker', which identifies objects and executes actions just by knocking on it with the smartphone.
Smartphone typing speeds catching up with keyboards
The largest experiment to date on mobile typing sheds new light on average performance of touchscreen typing and factors impacting the text input speed.
Which comes first: Smartphone dependency or depression?
New research suggests a person's reliance on his or her smartphone predicts greater loneliness and depressive symptoms, as opposed to the other way around.
Unlock your smartphone with earbuds
A University at Buffalo-led research team is developing EarEcho, a biometric tool that uses modified wireless earbuds to authenticate smartphone users via the unique geometry of their ear canal.
Are there health consequences associated with not using a smartphone?
Many studies have examined the health effects of smartphone abuse, but a new study looks at the sociodemographic features and health indicators of people who have a smartphone but do not use it regularly.
More Smartphone News and Smartphone Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.