Nav: Home

Physicists' finding could revolutionize information transmission

July 09, 2019

RIVERSIDE, Calif. -- Move aside, electrons; it's time to make way for the trion.

A research team led by physicists at the University of California, Riverside, has observed, characterized, and controlled dark trions in a semiconductor -- ultraclean single-layer tungsten diselenide (WSe2) -- a feat that could increase the capacity and alter the form of information transmission.

In a semiconductor, such as WSe2, a trion is a quantum bound state of three charged particles. A negative trion contains two electrons and one hole; a positive trion contains two holes and one electron. A hole is the vacancy of an electron in a semiconductor, which behaves like a positively charged particle. Because a trion contains three interacting particles, it can carry much more information than a single electron.

Most electronics today use individual electrons to conduct electricity and transmit information. As trions carry net electric charge, their motion can be controlled by an electric field. Trions can, therefore, also be used as information carriers. Compared to individual electrons, trions have controllable spin and momentum indices and a rich internal structure, which can be used to encode information.

Trions can be categorized into bright and dark trions with distinct spin configurations. A bright trion contains an electron and a hole with opposite spins. A dark trion contains an electron and a hole with the same spin. Bright trions couple strongly to light and emit light efficiently, meaning they decay quickly. Dark trions, however, couple weakly to light, meaning they decay much more slowly than bright trions.

The researchers measured the lifetime of dark trions and found they last more than 100 times longer than the more common bright trions. The long lifetime enables information transmission by trions over a much longer distance.

"Our work allows the writing and reading of trion information by light," said Chun Hung (Joshua) Lui, an assistant professor of physics and astronomy at UC Riverside, who led the research. "We can generate two types of trions -- dark and bright trions -- and control how information is encoded in them."

The results of the research are published in the journal Physical Review Letters.

"Our results could enable new ways of information transmission," said Erfu Liu, the first author of the research paper, and a postdoctoral researcher in Lui's lab. "Dark trions, with their long lifetime, can help us realize information transmission by trions. Just like increasing your Wi-Fi bandwidth at home, trion transmission allows more information to come through than individual electrons."

The researchers used a single layer of WSe2 atoms, resembling a graphene sheet, because the dark trion energy level in WSe2 lies below the bright trion energy level.  The dark trions can therefore accumulate a large population, enabling their detection.

Lui explained that most trion research today focuses on bright trions because they emit so much light and can be easily measured.

"But we focus on dark trions and their detailed behavior under different charge densities in single-layer WSe2 devices," Lui said. "We were able to demonstrate a continuous tuning from positive dark trions to negative dark trions by simply adjusting an external voltage. We were also able to confirm dark trions' distinct spin configuration from bright trions.

"If we can use trions to transmit information, our information technology will be greatly enriched," he added. "The major obstacle in such a development has been the short lifetime of bright trions. Now the long-lived dark trions can help us overcome this obstacle."

Next, his team plans to demonstrate the actual transport of information by dark trions.

"We intend to demonstrate the first working device that uses dark trions to transport information," Lui said. "If such a prototype trion device works, dark trions can then be used to transport quantum information."
-end-
The research was supported by UCR startup funds.

Lui and Liu were joined in the study by Jeremiah van Baren and Mashael M. Altaiary of UCR; Zhengguang Lu and Dmitry Smirnov of the National High Magnetic Field Laboratory, Florida; and Takashi Taniguchi and Kenji Watanabe of the National Institute for Materials Science, Japan.

The University of California, Riverside (http://www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment is more than 24,000 students. The campus opened a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of almost $2 billion. To learn more, email news@ucr.edu.

University of California - Riverside

Related Semiconductor Articles:

Ultrafast tunable semiconductor metamaterial created
An international team of researchers has devised an ultrafast tunable metamaterial based on gallium arsenide nanoparticles, as published by Nature Communications.
Graphene 'copy machine' may produce cheap semiconductor wafers
A new technique developed by MIT engineers may vastly reduce the overall cost of wafer technology and enable devices made from more exotic, higher-performing semiconductor materials than conventional silicon.
Method improves semiconductor fiber optics, paves way for developing devices
A new method to improve semiconductor fiber optics may lead to a material structure that might one day revolutionize the global transmission of data, according to an interdisciplinary team of researchers.
Scientists discover new 'boat' form of promising semiconductor GeSe
Princeton researchers have discovered a new form of the simple compound GeSe that has surprisingly escaped detection until now.
UNIST engineers oxide semiconductor just single atom thick
A new study, affiliated with South Korea's Ulsan National Institute of Science and Technology, has introduced a new technique that efficiently isolates circulating tumor cells from whole blood at a liquid-liquid interface.
Semiconductor-free microelectronics are now possible, thanks to metamaterials
Engineers at the University of California San Diego have fabricated the first semiconductor-free, optically-controlled microelectronic device.
Notre Dame researchers find transition point in semiconductor nanomaterials
Collaborative research at Notre Dame has demonstrated that electronic interactions play a significant role in the dimensional crossover of semiconductor nanomaterials.
Graphene key to growing 2-dimensional semiconductor with extraordinary properties
A newly discovered method for making two-dimensional materials could lead to new and extraordinary properties, particularly in a class of materials called nitrides, say the Penn State materials scientists who discovered the process.
UA organic semiconductor research could boost electronics
A team of UA researchers in engineering and chemistry has received $590,000 from the National Science Foundation to enhance the effectiveness of organic semiconductors for making ultrathin and flexible optoelectronics like OLED displays for TVs and mobile phones.
NREL theory establishes a path to high-performance 2-D semiconductor devices
Researchers at the Energy Department's National Renewable Energy Laboratory (NREL) have uncovered a way to overcome a principal obstacle in using two-dimensional (2-D) semiconductors in electronic and optoelectronic devices.

Related Semiconductor Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...