'Hunger hormone' enhances memory

July 09, 2019

A team of neuroscience researchers at the University of Southern California have identified a surprising new role for the "hunger hormone" ghrelin. Ghrelin has previously been recognized for its unique role in sending hunger signals from the gut to the brain, but, as presented this week at the annual meeting of the Society for the Study of Ingestive Behavior, these new findings suggest that it may also be important for memory control.

Ghrelin is produced in the stomach and secreted in anticipation of eating, and is known for its role to increase hunger. "For example, ghrelin levels would be high if you were at a restaurant, looking forward to a delicious dinner that was going to be served shortly," said Dr. Elizabeth Davis, lead author on the study. Once it is secreted, ghrelin binds to specialized receptors on the vagus nerve - a nerve that communicates a variety of signals from the gut to the brain. "We recently discovered that in addition to influencing the amount of food consumed during a meal, the vagus nerve also influences memory function," said Dr. Scott Kanoski, senior author of the study. The team hypothesized that ghrelin is a key molecule that helps the vagus nerve promote memory.

Using an approach called RNA interference to reduce the amount of ghrelin receptor, the researchers blocked ghrelin signaling in the vagus nerve of laboratory rats. When given a series of memory tasks, animals with reduced vagal ghrelin signaling were impaired in a test of episodic memory, a type of memory that involves remembering what, when, and where something occurred, such as recalling your first day of school. For the rats, this required remembering a specific object in a specific location.

The team also investigated whether vagal ghrelin signaling influences feeding behavior. They found that when the vagus nerve could not receive the ghrelin signal, the animals ate more frequently, yet consumed smaller amounts at each meal. Dr. Davis thinks these results may be related to the episodic memory problems. "Deciding to eat or not to eat is influenced by the memory of the previous meal," says Davis. "Ghrelin signaling to the vagus nerve may be a shared molecular link between remembering a past meal and the hunger signals that are generated in anticipation of the next meal."

These novel findings add to our understanding of how episodic memories are generated, as well as the relationship between memory and eating behavior. In the future, researchers may be able to develop strategies for improving memory capacity in humans by manipulating ghrelin signaling from the gut to the brain.
-end-
Research citation: Vagal afferent ghrelin signaling promotes episodic memory and influences meal patterns in rats
Elizabeth A Davis1, Andrea N Suarez1, Clarissa M Liu1, Guillaume de Lartigue2, Scott E Kanoski,1
1University of Southern California Los Angeles, CA, USA; 2University of Florida Gainesville, FL, USA
Presented July 2019, Society for the Study of Ingestive Behavior, Utrecht, Netherlands

Contact:
Dr. Scott Kanoski
kanoski@usc.edu
213-821-5762
http://www.kanoski-lab.com

Society for the Study of Ingestive Behavior

Related Memory Articles from Brightsurf:

Memory of the Venus flytrap
In a study to be published in Nature Plants, a graduate student Mr.

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Previously claimed memory boosting font 'Sans Forgetica' does not actually boost memory
It was previously claimed that the font Sans Forgetica could enhance people's memory for information, however researchers from the University of Warwick and the University of Waikato, New Zealand, have found after carrying out numerous experiments that the font does not enhance memory.

Memory boost with just one look
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls.

VR is not suited to visual memory?!
Toyohashi university of technology researcher and a research team at Tokyo Denki University have found that virtual reality (VR) may interfere with visual memory.

The genetic signature of memory
Despite their importance in memory, the human cortex and subcortex display a distinct collection of 'gene signatures.' The work recently published in eNeuro increases our understanding of how the brain creates memories and identifies potential genes for further investigation.

How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.

A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.

Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.

Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.

Read More: Memory News and Memory Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.