Movement ecology bears fruits: ATLAS supports map-based navigation of wild bats

July 09, 2020

(Jerusalem, July 10, 2020) -- When wild Egyptian fruit bats set out at night to forage in Israel's Hula Valley, they do so using advanced spatial memory and a flexible cognitive mapping of the fruit trees and other goals scattered in their foraging area. They seldom search randomly and their foraging patterns cannot be explained by simpler navigation mechanisms, a research team headed by Hebrew University of Jerusalem's Professor Ran Nathan has found.

The groundbreaking study, co-authored with Tel Aviv University Prof. Sivan Toledo, Hebrew U doctoral candidate David Shohami and other members of Nathan's group, is featured as the cover story for the current issue of Science magazine. It details the bats' cognitive map - the animals' mental representation of their own position relative to the surrounding environment - that helps them to move efficiently from any location to any of the many goals within their foraging area, even if the goal is out of their sight or smell range.

The existence of a cognitive map allows the bats to remember and return to favorable fruit trees, roosting caves and other goals. They use mapping and memory skills, rather than relying on path "directions" following numerous landmarks, specific cues originating from these goals, or simply finding these targets by chance.

To track the animals, the researchers had to overcome the limitations of GPS and other available wildlife tracking technologies. Although scientists have achieved key insights into animals' navigational capabilities from experiments on rats and other laboratory animals, limited battery size and the need to remotely retrieve data from GPS trackers prevented researchers from collecting large sets of data on wild animals in their natural habitats.

Alternative tracking methods such as radio telemetry have been used to track small wild animals, but they do not provide sufficiently detailed, long-term information on the movements, leaving researchers at an impasse.

"Up to now the technologies we had could not be used to track small wild animals in their natural habitats with enough detail required to test the existence of a cognitive map," says Prof. Nathan.

To solve the dilemma, Nathan teamed up with Toledo to develop an advanced "reverse-GPS" tracking system they called ATLAS. After a few years of development and refinement, Shohami used the system to collect a large dataset of 172 foraging Egyptian fruit bats comprising more than 18 million localizations collected over 3449 bat-nights across 4 years.

ATLAS movement data provided the means for detailed track analysis combined with translocation experiments and mapping of all fruit trees in the study area, spanning 88,200 hectares. The system provided researchers with detailed, accurate information from many individuals for relatively long periods at relatively low cost, showing that wild bats seldom search for food randomly, but instead repeatedly forage in goal-directed, long, and straight flights that include frequent shortcuts.

The team also ruled out alternative, non-map-based strategies by analyzing simulated tracks, time-lag embedding, and other analyses of the trajectory data.

The results present the most comprehensive evidence for a cognitive map from any wild animal studied since scientists first hypothesized the existence of a human-style cognitive map in 1948, says Nathan. Furthermore, the study marks a landmark for movement ecology, the academic discipline that Nathan pioneered in 2008 to study life on the move.

"Movement ecology has benefited from advances in tracking technology, but new ideas and novel insights have lagged behind. ATLAS has given us the keys to unlock previously unanswerable questions and will continue to shed light on a range of enigmatic natural phenomena," he says.
-end-


The Hebrew University of Jerusalem

Related Bats Articles from Brightsurf:

These masked singers are bats
Bats wear face masks, too. Bat researchers got lucky, observing wrinkle-faced bats in a lek, and copulating, for the first time.

Why do bats fly into walls?
Bats sometimes collide with large walls even though they detect these walls with their sonar system.

Vampire bats social distance when they get sick
A new paper in Behavioral Ecology finds that wild vampire bats that are sick spend less time near others from their community, which slows how quickly a disease will spread.

Why doesn't Ebola cause disease in bats, as it does in people?
A new study by researchers from The University of Texas Medical Branch at Galveston uncovered new information on why the Ebola virus can live within bats without causing them harm, while the same virus wreaks deadly havoc to people.

The genetic basis of bats' superpowers revealed
First six reference-quality bat genomes released and analysed

Bats offer clues to treating COVID-19
Bats carry many viruses, including COVID-19, without becoming ill. Biologists at the University of Rochester are studying the immune system of bats to find potential ways to ''mimic'' that system in humans.

A new social role for echolocation in bats that hunt together
To find prey in the dark, bats use echolocation. Some species, like Molossus molossus, may also search within hearing distance of their echolocating group members, sharing information about where food patches are located.

Coronaviruses and bats have been evolving together for millions of years
Scientists compared the different kinds of coronaviruses living in 36 bat species from the western Indian Ocean and nearby areas of Africa.

Bats depend on conspecifics when hunting above farmland
Common noctules -- one of the largest bat species native to Germany -- are searching for their fellows during their hunt for insects above farmland.

Tiny insects become 'visible' to bats when they swarm
Small insects that would normally be undetectable to bats using echolocation suddenly become detectable when they occur in large swarms.

Read More: Bats News and Bats Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.