Oil spill clean- up gets doggone hairy

July 09, 2020

Oil spill disasters on land cause long-term damage for communities and the natural environment, polluting soils and sediments and contaminating groundwater.

Current methods using synthetic sorbent materials can be effective for cleaning up oil spills, but these materials are often expensive and generate large volumes of non-biodegradable plastic wastes. Now the first comparison of natural-origin sorbent materials for land-based oil spills, including peat moss, recycled human hair, and dog fur, shows that sustainable, cheaper and biodegradable options can be developed.

The University of Technology Sydney (UTS) project found that dog fur and human hair products - recycled from salon wastes and dog groomers - can be just as good as synthetic fabrics at cleaning up crude oil spills on hard land surfaces like highway roads, pavement, and sealed concrete floors. Polypropylene, a plastic, is a widely-used fabric used to clean up oil spills in aquatic environments.

"Dog fur in particular was surprisingly good at oil spill clean-up, and felted mats from human hair and fur were very easy to apply and remove from the spills." lead author of the study, UTS Environmental Scientist Dr Megan Murray, said. Dr Murray investigates environmentally-friendly solutions for contamination and leads The Phyto Lab research group at UTS School of Life Sciences.

"This is a very exciting finding for land managers who respond to spilled oil from trucks, storage tanks, or leaking oil pipelines. All of these land scenarios can be treated effectively with sustainable-origin sorbents," she said.

The sorbents tested included two commercially-available products, propylene and loose peat moss, as well as sustainable-origin prototypes including felted mats made of dog fur and human hair. Prototype oil-spill sorbent booms filled with dog fur and human hair were also tested. Crude oil was used to replicate an oil spill. The results of the study are published in Environments.

The research team simulated three types of land surfaces; non-porous hard surfaces, semi-porous surfaces, and sand, to recreate common oil-spill scenarios.

"We found that loose peat moss is not as effective at cleaning up oil spills on land compared to dog fur and hair products, and it is not useful at all for sandy environments." Dr Murray said.

"Based on this research, we recommend peat moss is no longer used for this purpose. Given that peat moss is a limited resource and harvesting it requires degrading wetland ecosystems, we think this is a very important finding." she said.

The research concluded that, for now, sandy environments like coastal beaches can still benefit from the use of polypropylene sorbents, but further exploration of sustainable-origin sorbents is planned.

The researchers say that future applications from the research include investigating felted mats of sustainable-origin sorbents for river bank stabilisation, as well as the removal of pollutants from flowing polluted waters, similar to existing membrane technology.
-end-


University of Technology Sydney

Related Oil Spill Articles from Brightsurf:

Oil spill clean- up gets doggone hairy
A study investigating sustainable-origin sorbent materials to clean up oil spill disasters has made a surprising discovery.

Political 'oil spill': Polarization is growing stronger and getting stickier
Experts have documented that political polarization is intensifying in the United States.

Oil spill: where and when will it reach the beach? Answers to prevent environmental impacts
When an accident involving oil spills occurs, forecasting the behaviour of the oil slick and understanding in advance where and when it will reach the coastline is crucial to organize an efficient emergency response that is able to limit environmental and economic repercussions.

Chemical herders could impact oil spill cleanup
Oil spills in the ocean can cause devastation to wildlife, so effective cleanup is a top priority.

Study shows continuing impacts of Deepwater Horizon oil spill
Nine years ago tomorrow -- April 20, 2010 -- crude oil began leaking from the Deepwater Horizon drilling rig into the Gulf of Mexico in what turned out to be the largest marine oil spill in history.

New report examines the safety of using dispersants in oil spill clean ups
A multi-disciplinary team of scientists has issued a series of findings and recommendations on the safety of using dispersal agents in oil spill clean-up efforts in a report published this month by the National Academies of Science, Engineering, and Medicine.

What plants can teach us about oil spill clean-up, microfluidics
For years, scientists have been inspired by nature to innovate solutions to tricky problems, even oil spills -- manmade disasters with devastating environmental and economic consequences.

Top oil spill expert available to discuss new oil spill dispersant research
Internationally recognized oil spill expert, Nancy Kinner, a professor of civil and environmental engineering at the University of New Hampshire is available to discuss new post-Deepwater Horizon (DWH) dispersant research and its use in future oil spill responses.

Gulf spill oil dispersants associated with health symptoms in cleanup workers
Workers who were likely exposed to dispersants while cleaning up the 2010 Deepwater Horizon oil spill experienced a range of health symptoms including cough and wheeze, and skin and eye irritation, according to scientists at the National Institutes of Health (NIH).

New view of dispersants used after Deepwater Horizon oil spill
New research has uncovered an added dimension to the decision to inject large amounts of chemical dispersants above the crippled seafloor oil well during the Deepwater Horizon disaster in 2010.

Read More: Oil Spill News and Oil Spill Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.