Purified stem cells restore muscle in mice with muscular dystrophy

July 10, 2008

By injecting purified stem cells isolated from adult skeletal muscle, researchers have shown they can restore healthy muscle and improve muscle function in mice with a form of muscular dystrophy. Those muscle-building stem cells were derived from a larger pool of so-called satellite cells that normally associate with mature muscle fibers and play a role in muscle growth and repair.

In addition to their contributions to mature muscle, the injected cells also replenished the pool of regenerative cells normally found in muscle. Those stem cells allowed the treated muscle to undergo subsequent rounds of injury repair, they found.

"Our work shows proof-of-concept that purified muscle stem cells can be used in therapy," said Amy Wagers of Harvard University, noting that in some cases the stem cells replaced more than 90 percent of the muscle fibers. Such an advance would require isolation of stem cells equivalent to those in the mouse from human muscle, something Wagers said her team is now working on.

Satellite cells were first described decades ago and have since generally been considered as a homogeneous group, Wagers said. While anatomically they look similar under a microscope, they nonetheless show considerable variation in their physiology and function. In a previous study, Wagers' identified a set of five markers that characterize the only subset of satellite cells responsible for forming muscle, which they also refer to as skeletal muscle precursors or SMPs.

In the new study, the researchers analyzed the stem cell and regenerative properties of those SMPs. When engrafted into muscle of mice lacking dystrophin, purified SMPs contributed to up to 94 percent of muscle fibers, restoring dystrophin expression and significantly improving muscle structure and contractile function, they report. (The dystrophin gene encodes a protein important for muscle integrity. Mice lacking dystrophin, also known as mdx mice, are a model for Duchenne Muscular Dystrophy, the most prevalent form of muscular dystrophy.)

" Importantly, high-level engraftment of transplanted SMPs in mdx animals shows therapeutic value--restoring defective dystrophin gene expression, improving muscle histology, and rescuing physiological muscle function," the researchers said. "Moreover, in addition to generating mature muscle fibers, transplanted SMPs also re-seed the satellite cell niche and are maintained there such that they can be recruited to participate in future rounds of muscle regeneration.

"Taken together, these data indicate that SMPs act as renewable, transplantable stem cells for adult skeletal muscle. The level of myofiber reconstitution achieved by these myogenic stem cells exceeds that reported for most other myogenic cell populations and leads to a striking improvement of muscle contraction function in SMP-treated muscles. These data thus provide direct evidence that prospectively isolatable, lineage-specific skeletal muscle stem cells provide a robust source of muscle replacement cells and a viable therapeutic option for the treatment of muscle degenerative disorders."

Wagers noted however that there may be complications in the delivery of cell therapy in humans, particularly for those with conditions influencing skeletal muscle throughout the body. Even so, the new findings present an "opportunity to understand what happens [to these regenerative cells] in disease and identify factors and pathways that may boost their activity," she said. "We may get a handle on drugs that could target muscle impairment" not only in those with muscular dystrophies, but also in elderly people suffering from the muscle wasting that comes with age.
-end-
The researchers include Massimiliano Cerletti, Joslin Diabetes Center, Boston, MA, Harvard University, and Harvard Stem Cell Institute, Cambridge, MA; Sara Jurga, Joslin Diabetes Center, Boston, MA, Harvard University, and Harvard Stem Cell Institute, Cambridge, MA; Carol A. Witczak, Joslin Diabetes Center, Boston, MA; Michael F. Hirshman, Joslin Diabetes Center, Boston, MA; Jennifer L. Shadrach, Joslin Diabetes Center, Boston, MA, Harvard University, and Harvard Stem Cell Institute, Cambridge, MA; Laurie J. Goodyear, Joslin Diabetes Center, Boston, MA; and Amy J. Wagers, Joslin Diabetes Center, Boston, MA, Harvard University, and Harvard Stem Cell Institute, Cambridge, MA.

Cell Press

Related Muscular Dystrophy Articles from Brightsurf:

Using CRISPR to find muscular dystrophy treatments
A study from Boston Children's Hospital used CRISPR-Cas9 to better understand facioscapulohumeral muscular dystrophy (FSHD) and explore potential treatments by systematically deleting every gene in the genome.

Duchenne muscular dystrophy diagnosis improved by simple accelerometers
Testing for Duchenne muscular dystrophy can require specialized equipment, invasive procedures and high expense, but measuring changes in muscle function and identifying compensatory walking gait could lead to earlier detection.

New therapy targets cause of adult-onset muscular dystrophy
The compound designed at Scripps Research, called Cugamycin, works by recognizing toxic RNA repeats and destroying the garbled gene transcript.

Gene therapy cassettes improved for muscular dystrophy
Experimental gene therapy cassettes for Duchenne muscular dystrophy have been modified to deliver better performance.

Discovery points to innovative new way to treat Duchenne muscular dystrophy
Researchers at The Ottawa Hospital and the University of Ottawa have discovered a new way to treat the loss of muscle function caused by Duchenne muscular dystrophy in animal models of the disease.

Extracellular RNA in urine may provide useful biomarkers for muscular dystrophy
Massachusetts General Hospital researchers have found that extracellular RNA in urine may be a source of biomarkers for the two most common forms of muscular dystrophy, noninvasively providing information about whether therapeutic drugs are having the desired effects on a molecular level.

Tamoxifen and raloxifene slow down the progression of muscular dystrophy
Steroids are currently the only available treatment to reduce the repetitive cycles of inflammation and disease progression associated with functional deterioration in patients with muscular dystrophy (MD).

Designed proteins to treat muscular dystrophy
The cell scaffolding holds muscle fibers together and protects them from damage.

Gene-editing alternative corrects Duchenne muscular dystrophy
Using the new gene-editing enzyme CRISPR-Cpf1, researchers at UT Southwestern Medical Center have successfully corrected Duchenne muscular dystrophy in human cells and mice in the lab.

GW researcher finds genetic cause of new type of muscular dystrophy
George Washington University & St. George's University of London research, published in The American Journal of Human Genetics, outlines a newly discovered genetic mutation associated with short stature, muscle weakness, intellectual disability, and cataracts, leading researchers to believe this is a new type of congenital muscular dystrophy.

Read More: Muscular Dystrophy News and Muscular Dystrophy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.