Brain metastases common and difficult to treat in ROS1 lung cancer

July 10, 2018

Increasingly, doctors are treating lung cancer based on the genetic rearrangements driving the disease. For example, cancers that are driven by changes in the genes ALK, EGFR, and ROS1 can now all be paired with drugs that target these specific changes. However, these cancers are not only dangerous in the lung where they appear, but can become especially dangerous if they are able to metastasize to the brain - a common cause of death from lung cancer. And some targeted treatments work better than others against cancer that has spread to the brain.

A University of Colorado Cancer Center study published in the Journal of Thoracic Oncology explores the occurrence and treatment of brain metastases in stage IV ROS1-positive non-small cell lung cancer. Importantly, and in contrast with the findings of previous groups, brain metastases were found to be fairly common in stage IV ROS1-positive cancers. In this study, 36 percent of 33 ROS1 patients (compared with 34 percent of 115 ALK patients) tested positive for brain metastases at the time of diagnosis. When the rate of brain metastases at stage IV disease was compared across ROS1, ALK, EGFR, KRAS, and BRAF mutations, there was no statistically significant difference between the groups.

"Our study was novel in that we compared the incidence of brain metastases in newly diagnosed stage IV ROS1 patients not only with ALK patients, but also with EGFR, KRAS, BRAF and others. When we compared across multiple gene cohorts, we did not find a signal that ROS1 cancers were less likely metastasize to the brain at time of diagnosis," says Tejas Patil, MD, oncology fellow at CU Cancer Center and instructor at CU School of Medicine. "Thus, it seems these genes have the same likelihood of brain metastases at time of diagnosis. The finding implies that ROS1 cancers are no more or less predisposed than other oncogene-driven cancers to metastasize to the brain."

The group also examined the outcomes of ROS1 and ALK patients treated with the drug crizotinib, which targets both ROS1- and ALK-rearranged cancers. A common measurement of a drug's success is progression-free survival (PFS), or the duration during which a drug keeps a cancer from growing. When cancer progresses, it often implies that the disease has evolved resistance to the drug. In this case, PFS on crizotinib for ROS1 patients was 11 months, compared with PFS of 8 months for ALK patients.

However, when either of these cancers progressed on crizotinib, it often did so in the brain or central nervous system. In 47 percent of ROS1 patients, the brain was the first and only site of progression, meaning that while the drug continued to control cancer elsewhere in the body, it was unable to act as efficiently against ROS1 cancer in the brain.

"This reflects poor delivery through blood-brain barrier," says Dr. Patil.

The challenge is that many targeted therapies including crizotinib are simply too large to pass through the barrier that protects the brain from the rest of the body. If a drug cannot cross the blood-brain barrier, it can't target the growth of cancer within that wall.

"I think this study clarifies the need to develop targeted therapies with brain penetration against these oncogene-addicted lung cancers," Dr. Patil says.

In fact, new targeted therapies for EGFR+ and ALK+ lung cancers are showing tremendous promise in moving into the brain to target this common location of metastasis. Dr. Patil points out that it is everyone's hope that drug development for ROS1 lung cancers will follow a similar trajectory, helping to control cancer not only at its site of first occurrence, but also within the brain, a common site of progression.
-end-


University of Colorado Anschutz Medical Campus

Related Lung Cancer Articles from Brightsurf:

State-level lung cancer screening rates not aligned with lung cancer burden in the US
A new study reports that state-level lung cancer screening rates were not aligned with lung cancer burden.

The lung microbiome may affect lung cancer pathogenesis and prognosis
Enrichment of the lungs with oral commensal microbes was associated with advanced stage disease, worse prognosis, and tumor progression in patients with lung cancer, according to results from a study published in Cancer Discovery, a journal of the American Association for Cancer Research.

New analysis finds lung cancer screening reduces rates of lung cancer-specific death
Low-dose CT screening methods may prevent one death per 250 at-risk adults screened, according to a meta-analysis of eight randomized controlled clinical trials of lung cancer screening.

'Social smokers' face disproportionate risk of death from lung disease and lung cancer
'Social smokers' are more than twice as likely to die of lung disease and more than eight times as likely to die of lung cancer than non-smokers, according to research presented at the European Respiratory Society International Congress.

Lung cancer therapy may improve outcomes of metastatic brain cancer
A medication commonly used to treat non-small cell lung cancer that has spread, or metastasized, may have benefits for patients with metastatic brain cancers, suggests a new review and analysis led by researchers at St.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Lung transplant patients face elevated lung cancer risk
In an American Journal of Transplantation study, lung cancer risk was increased after lung transplantation, especially in the native (non-transplanted) lung of single lung transplant recipients.

Proposed cancer treatment may boost lung cancer stem cells, study warns
Epigenetic therapies -- targeting enzymes that alter what genes are turned on or off in a cell -- are of growing interest in the cancer field as a way of making a cancer less aggressive or less malignant.

Are you at risk for lung cancer?
This question isn't only for people who've smoked a lot.

Read More: Lung Cancer News and Lung Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.